1、题目中要求矩阵两行元素的平均值按递增顺序排序,由于每行元素个数相等,按平均值排列与按每行元素之和排列是一个意思。所以应先求出各行元素之和,放入一维数组中,然后选择一种排序方法,对该数组进行排序,注意在排序时若有元素移动,则与之相应的行中各元素也必须做相应变动。
void Translation(float *matrix,int n)
//本算法对n×n的矩阵matrix,通过行变换,使其各行元素的平均值按递增排列。 {int i,j,k,l;
float sum,min; //sum暂存各行元素之和 float *p, *pi, *pk; for(i=0; i {sum=0.0; pk=matrix+i*n; //pk指向矩阵各行第1个元素. for (j=0; j for(i=0; i for(j=i+1;j {sum=*(pk+j); *(pk+j)=*(pi+j); *(pi+j)=sum;} sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元素之和. }//if }//for i free(p); //释放p数组. }// Translation [算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2). 2、假设以I和O分别表示入栈和出栈操作。栈的初态和终态均为空,入栈和出栈的操作序列可表示为仅由I和O组成的序列,称可以操作的序列为合法序列,否则称为非法序列。(15分) (1)A和D是合法序列,B和C 是非法序列。 (2)设被判定的操作序列已存入一维数组A中。 int Judge(char A[]) //判断字符数组A中的输入输出序列是否是合法序列。如是,返回true,否则返回false。 {i=0; //i为下标。 j=k=0; //j和k分别为I和字母O的的个数。 while(A[i]!=‘\\0’) //当未到字符数组尾就作。 {switch(A[i]) {case‘I’: j++; break; //入栈次数增1。 case‘O’: k++; if(k>j){printf(“序列非法\\n”);exit(0);} } i++; //不论A[i]是‘I’或‘O’,指针i均后移。} if(j!=k) {printf(“序列非法\\n”);return(false);} else {printf(“序列合法\\n”);return(true);} }//算法结束。

