第四单元 :团体操表演
------因数与倍数
一、导学内容:
义务教育课程标准实验教科书青岛版小学数学五年级上册101—106页 二、导学目标:
1.让学生经历2、5和3的倍数特征的探索过程,理解并掌握2和5的倍数的特征,会运用这些特征判断一个数是不是2和5的倍数;知道偶数和奇数的意义,会判断一个自然数是偶数还是奇数。
2.在学习活动中培养学生的观察、分析、比较、概括能力和推理能力,增强学生的探索意识,进一步感受数学的魅力。
三、教材简析:
本信息窗内容是在学生学习了因数、倍数的基础上,进一步来探索2、3、5的倍数的特征。通过呈现 “百数表”和“列举法”让学生从表中(或列举的数据)找出2和5的倍数,并用不同的符号分别圈出,再观察其特征。在理解2的倍数的特征后,揭示偶数和奇数的含义。对于2、5的倍数的具体特征,则引导学生在观察、交流的基础上自己归纳。2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解,而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否为3的倍数来判定,学生理解起来有一定的困难,因此把它放在2、5的倍数的特征后面教学。
四、本单元建议课时数:
5课时
第一课时
导学内容: 2和5的倍数的特征 导学目标:
1.让学生经历2、5的倍数特征的探索过程,理解并掌握2和5的倍数的特征,会运用这些特征判断一个数是不是2和5的倍数;知道偶数和奇数的意义,会判断一个自然数是偶数还是奇数。
2.在学习活动中培养学生的观察、分析、比较、概括能力和推理能力,增强学生的探索意识,进一步感受数学的魅力。
导学重点:
会运用这些特征判断一个数是不是2和5的倍数 导学难点:
会运用这些特征判断一个数是不是2和5的倍数 一、预习学案:
谈话:同学们,“每天运动一小时,健康生活一辈子”,阳光体育运动让我们健康快乐成长,让我们一同欣赏活动中的精彩瞬间吧!
二、导学案: 1.提出问题
观察情境图,根据信息让学生独立提出数学问题。
教师要注意引导学生提出有价值的数学问题,把学生的提问引到:跳交谊舞(圆圈舞)可以派多少人?
2.学习2的倍数的特征 (1)跳交谊舞可以派多少人?
问:你能用学过的知识用一句话概括说说可以派多少人? (2)2的倍数特征
问:2的倍数有什么特征呢? 问:生活中哪里用到双数?
问:这些双数都是2的倍数,它们有什么特征呢?对待数学问题不能只凭猜测,要进行验证。对这个问题的研究老师为你提供一张百数表,你可以从表中把2的倍数圈出来,也可以把2的倍数写出来,然后观察这些数有什么特征。
(3)汇报交流
(学生只要说的有道理就应该肯定,引导学生研究个位有什么特征与十位有什么关系来总结特征)
小结:所有2的倍数的个位上都是什么数?(0、2、4、6、8)。因此,判断一个数是不是2的倍数,只要看这个数什么部分的数就可以了?(个位上的数字)
(4)验证结论
刚才我们研究的这些数比较小,你能举一个多位数来验证一下吗? (5)学习偶数、奇数。 ①老师介绍偶数、奇数的概念。
老师举多个数,学生判断是偶数还是奇数。
②说明:0是偶数,但我们在这个单元中一般不考虑0。
③介绍学习方法:刚才同学们把2的倍数写出来研究的方法叫列举法,这是一种很好的数学研究方法。
3. 学习5的倍数的特征
(1)用刚才的方法自己研究5的倍数的特征 (2)交流:个位上是5或0。 (3)学生举例验证。 4. 2和5倍数的共同特征
对有困难的学生可以引导学生用“百数表”把2、5共同的倍数找出来研究特征。 三、课堂检测 自主练习2
奇数、偶数学生容易分清,做此题的时候可以比比谁分的快,让疲劳的大脑兴奋起来 四、课外拓展: 1、自主练习
先让学生自己填一填,再交流,然后根据2、5共同的倍数让学生把两个集合圈重新画一画
2的倍数 5的倍数
2、按要求组数。 0 、6、9、7
奇数: 2的倍数: 5的倍数 五、板书设计:
2、5倍数的特征
各位上是0、2、4、6、8的数都是2的倍数 个位是0、5的数都是5的倍数。
是2的倍数的数是偶数,不是2的倍数的数是奇数。 六、导学反思:
第二课时 导学内容: 3的倍数的特征
导学目标:
1.让学生经历3的倍数特征的探索过程,会判断一个自然数是3的倍数。
2.在学习活动中培养学生的观察、分析、比较、概括能力和推理能力,增强学生的探索意识,进一步感受数学的魅力。
导学重点:
掌握能被3整除的特征,并会判断 导学难点:
正确的判断一个数能否被3整除。 一、 预习学案: 指名说说2、5倍数的特征
直接揭题:上节课我们学习了2和5倍数的特征,3的倍数有什么特征呢? 二、导学案: 1.猜测3的倍数的特征
受2、5倍数特征的影响,学生大多会从数的个位上的数字进行研究,学生可能猜测:个位上是3、6、9的数是3的倍数。针对学生的错误结论,引导学生及时举出反例予以反驳:13、16、26、29等一些数个位上3、6、9就不是3的倍数,而24、15、27等一些数反而是3的倍数。
谈话:看来只观察一个数的个位数字是不能确定这个数是否是3的倍数,那么3的倍数到底有什么特征呢?
我们可以用什么方法进行研究?(百数表、列举法) 2.探究特征
①我们可以用什么方法进行研究?(百数表、列举法)
谈话:把“百数表”中3的倍数圈出来研究研究。(学生人手一份十行十列的百数表)
1 11 21 31 41 51 61 71 81 91
2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 42 43 44 45 46 47 48 49 50 52 53 54 55 56 57 58 59 60 62 63 64 65 66 67 68 69 70 72 73 74 75 76 77 78 79 80 82 83 84 85 86 87 88 89 90 92 93 94 95 96 97 98 99 100

