年龄(岁) 频数 知道的人数 [10,20) m 4 [20,30) n 6 [30,40) 15 12 [40,50) 10 6 [50,60) 7 3 [60,70] 3 2 表中所调查的居民年龄在[10,20),[20,30),[30,40)的人数成等差数列. (Ⅰ)求上表中的m,n值,若从年龄在[20,30)的居民中随机选取两人,求这两人至少有一人知道灭火器使用方法的概率;
(Ⅱ)在被调查的居民中,若从年龄在[10,20),[20,30)的居民中各随机选取2人参加消防知识讲座,记选中的4人中不知道灭火器使用方法的人数为?,求随机变量?的分布列和数学期望.
17.(本小题满分12分)
已知向量m?(2sinx,?1),n?(sinx?3cosx,?2),函数f(x)?(m?n)?m.
(Ⅰ)求f(x)在区间[?,]上的零点;
22(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c, a?4,△ABC的面积S?3,当x=A时,函数f(x)取得极大值,求b?c的值.
18.(本小题满分12分)
已知数列{an},{bn}满足:a1b1+a2b2+a3b3+…+anbn=(n?1)?2n?1?2(n?N*). (Ⅰ)若{bn }是首项为1,公比为2的等比数列,求数列{an}的前n项和Sn;
(Ⅱ)若{an}是等差数列,且an≠0,问:{bn}是否是等比数列?若是,求{an}和{bn}的通项公式;若不是,请说明理由.
19.(本小题满分12分)
如图,三棱柱ABC-A1B1C1中,平面ABB1A1⊥底面ABC,AB?BC?CA?=120°,D、E分别是BC、A1C1的中点.
(Ⅰ)试在棱AB上找一点F,使DE∥平面A1CF; (Ⅱ)在(Ⅰ)的条件下,求二面角A-A1C-F的余弦值. 20.(本小题满分13分)
已知动点P到定点F(2,0)的距离和它到定直线x?4的距离的比值为(Ⅰ)求动点P的轨迹?的方程;
(Ⅱ)若过点F的直线与点P的轨迹?相交于M,N两点(M,N均在y轴右侧),点A(0,2)、B(0,?2),设A,B,M,N四点构成的四边形的面积为S,求S的取值范围.
资阳高三数学(理科)试卷 第5页(共4页)
??1∠A1ABAA1,
22. 2
21.(本小题满分14分)
已知函数f(x)?x2?2x?alnx(a?R).
(Ⅰ)当a=2时,求函数f(x)在(1, f(1))处的切线方程; (Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数f(x)有两个极值点x1, x2(x1?x2),不等式f(x1)?mx2恒成立,求实数m的取值范围.
资阳市高中2012级高考模拟考试 数学参考答案及评分意见(理工类)
2,2};13. 2一、选择题:BAACD,BDCCB. 二、填空题:11. ?22;12. {?1,5?1;14.
3a;15. ①③⑤. 3三、解答题:
16.(本小题满分12分)
?m?n?15,解析:(Ⅰ)由题?解得m?5,n?10.
m?15?2n,?记选取的两人至少有一人知道灭火器使用方法为事件A,
2C4613?. ·则P(A)?1?2?1?·················································································· 4分
C104515(Ⅱ)随机变量?的所有可能值为0,1,2,3.
22C6C46154515??, 则P???0??2?2??C5C1010452257521112C6C4?C6C4C441562410234P???1??2?2?2??????=, 2C5C10C5C10104510452257511122C4?C6C4C4C4424666622P???2??2????????=, 22C5C10C52C10104510452257512C4C446124P???3??2?2???=. ···································································· 10分
C5C10104522575所以?的分布列是: ? P 0 1 2 3 1534224 75757575 ······································································································································ 11分
15342246所以?的数学期望E??0??1??2??3??. ····································· 12分
75757575517.(本小题满分12分)
解析:(Ⅰ)f(x)?(m?n)?m?(sinx?3cosx,1)?(2sinx,?1)
?23sinxcosx?2sin2x?1?3sin2x?cos2x?2sin(2x?). ······························ 3分
6资阳高三数学(理科)试卷 第6页(共4页)
?
k???(k∈Z),
6212????5??因为x?[?,],所以f(x)在区间[?,]上的零点是?,. ····················· 6分
22221212???(Ⅱ)根据题意f(A)?2,即sin(2A?)?1,所以2A??2k??(k∈Z),
662?因为0?A??,所以A?.
313bc?3,所以bc?4, 因为S?bcsinA?2422a?b?c2?2bccosA,得16?b2?c2?bc, 根据余弦定理
所以(b?c)2?16?3bc?28,所以b?c?27. ························································ 12分 18.(本小题满分12分)
解析:(Ⅰ)因为a1b1+a2b2+a3b3+…+anbn=(n?1)?2n?1?2, 则n?2时,a1b1+a2b2+a3b3+…+an-1bn-1=(n?2)?2n?2, 两式相减,得anbn=n·2n(n≥2),
当n=1时,a1b1=2,满足上式,所以anbn=n·2n(n?N*),
又因为{bn }是首项为1,公比为2的等比数列,则bn=2n?1,所以an=2n, 故数列{an}是首项为2,公差为2的等差数列,
n(2?2n)所以Sn?····················································································· 6分 ?n2?n. ·
2n?2n(Ⅱ)设{an}的公差为d,则an=a1+(n-1)d,由(Ⅰ)得bn?, ················· 7分
a1?(n?1)dbn?1(n?1)?2n?1a1?nd?d??则 ·················································································· 8分 bna1?ndn?2n2(n?1)(a1?nd?d)?
n(a1?nd)n(a1?nd)?a1?nd?nd?d?2?
n(a1?nd)a1?d?2[1?].
n(a1?nd)2n故当d?a1时,数列{bn}是等比数列,公比为2,此时an=na1,bn?; ············· 10分
a1当d?a1时,数列{bn}不是等比数列. ········································································ 12分 19.(本小题满分12分)
解析:(Ⅰ)F是AB的中点,证明如下:
连结DF,又因为D、E分别是BC、A1C1的中点,
11∥A1C1,且A1E=A1C1, 所以DF∥AC,又AC=2=2则DF∥AE,故四边形AFDE是平行四边形, 1=1
所以DE∥A1F,又A1F?平面A1CF,DE?平面A1CF, 所以DE∥平面A1CF. ································································································· 4分 (Ⅱ)由题∠AA1B1=60°,设A1A=2,则A1B1=1, 所以AB1?22?12?2?2?1?cos60?3, 则AB12?A1B12?A1A2,所以A1B1⊥AB1, 过点B1作平面A1B的垂线B1z,分别以B1A1,B1A,B1z的方向为x,y,z轴,建立如图空间直角坐标系.
由f(x)?0,得2x???k?(k∈Z),则x?资阳高三数学(理科)试卷 第7页(共4页)
131有A1(1,0,0),A(0,3,0),C(?,3,),F(?,3,0),
222333则A1A?(?1,3,0),A1C?(?,3,),FC?(0,0,),
222设平面A1CF,平面A1AC的法向量分别为m?(x1,y1,z1),n?(x2,y2,z2),
3105, 3553105所以二面角A-A1C-F的余弦值为. ···························································· 12分
3520.(本小题满分13分)
??3?x?3y1???0,??21?m?AC1由?即???3z?0,?m?FC?0,1??2?3?n?AC?0,??x?3y2??1由?即?22??n?A1A?0,??x?3y?0,?22m?n33?所以cosm?n?|m|?|n|7?3z1?0,2取m?(2,3,0), 3z2?0,取n?(3,1,1), 2(x?2)2?y22解析:(Ⅰ)设动点P(x,y),则, ?|x?4|2x2y2化简得?··································································································· 4分 ?1. ·
842(Ⅱ)由(Ⅰ),轨迹?是以F(2,0)为焦点,离心率为的椭圆,如图,连结OM、ON,设
2直线MN方程为x?my?2,点M(x1,y1),N(x2,y2),
?x?my?2,?联立?x2y2消去x,得(m2?2)y2?4my?4?0,
?1,??4?84m4则y1?y1??2,y1y1??2,
m?2m?2所以4m21642?m2?1|y1?y2|?(y1?y2)?4y1y2?(?2)?2?,
m?2m?2m2?2由于M,N均在y轴右侧,则x1?0,x2?0,且0?|m|?1,
11则S?S?OAM?S?OBN?S?OMN??2(x1?x2)??2|y1?y2|?m(y1?y2)?4?|y1?y2|
222224m42?m?142?m?1?8??2?4??, ··················································· 8分
m?2m2?2m2?242?t?842(t?2)?令t?m2?1,则1?t?2,则S? t2?1t2?1【或利用S?S?ABN?S?AMN求面积S,解法如下:
2?4m?42?m2?18?42m?m2?1y2?,则x2?my2?2?,
2(m2?2)2(m2?2)211|2m?2|8?42m?m2?11242?m?12m?2S?|AB|?x2?|MN|? ?2???1?m??2222222(m?2)2m?21?m1?m资阳高三数学(理科)试卷 第8页(共4页)

