3.电控点火系统中,简述其能够点火的要求。 (1)能产生足以击穿火花塞电极间隙的电压 (2)火花应具有足够的能量 (3)最佳点火提前角/点火时刻
4.电控点火系统中,点火时间与气缸的压力关系如图,指出图中三条曲线中哪条属于最佳点火时刻,并分析其余两个点火时间不合理的原因及可能产生的危害。
4.实际点火提前角由哪三部分组成,并写出每一部分的主要影响因素。 由初始点火提前角、基本点火提前角和修正点火提前角组成。
初始点火提前角是ECU根据发动机上止点位置确定的固定点火时刻,其大小随发动机而异。基本点火提前角是ECU根据发动机转速信号和进气支管压力信号(或进气量信号),在存储器中查到这一工况下运转时相应的点火提前角。修正点火提前角(或延迟角)是ECU根据各种传感器传来的信号,对点火提前角进行修正,是控制更加准确
5.点火提前角的修正包括哪4部分? (1)暖机修正 (2)过热修正 (3)怠速稳定性的修正 (4)最大和最小提前角控制 6.用于检测爆燃传感器信号的传感器有哪三类?
第一类利用装于每个气缸内的压力传感器检测爆燃引起的压力波动;第二类把一个或两个加速度传感器装在发动机缸体或进气管上,检测爆燃引起的振动;第三类对燃烧噪声进行频谱分析。 7.写出EGR系统净化Nox的原理。
排气中的主要成分是CO2、H2O和N2等,这三种气体的热容量较高。当新混合气和部分排气混合后,热容量也随之增大。在进行相同发热量的燃烧时,与不混合时相比,可使燃烧温度下降,这样就抑制NOx生成,因为NOx主要是在高温富氧的条件下生成的。但是过度的废气再循环,使混合气的着火性能和发动机输出功率下降,将会影响发动机的正常运行,特别是在怠速、低转速小负荷及发动机处于冷态运行时,再循环的废气将会明显降低发动机的性能。因此应根据发动机结构、工况及工作条件的变化自动调整参与循环的废气量,并选择NOx排放量多的发动机运转范围,进行适量的EGR控制。通常,EGR的控制指标采用EGR率表示,其定义如下:EGR率=[EGR气体流量/(吸入空气量+EGR气体流量)]×100%
一般机械式控制装置的EGR率较小,即使采用能进行比较复杂控制的机械式控制装置,控制的自由度也受到限制,并且控制装置繁多。电子式废气再循环控制系统,不仅结构简单,而且可进行较大EGR率控制,但随着EGR的增加,燃烧将变得不稳定,缺火严重,油耗上升,HC排量也增加。因此,当燃烧恶化时,可减少EGR率,甚至完全停止EGR。电子式EGR控制系统的主要功能,就是选择NOx排放量多的发动机运转范围,进行适量EGR控制。 8.写出进气惯性增压控制系统的原理。
空气在进气管内流动时,具有一定的惯性并且会在进气管内产生一种往复运动的压力波,如果此压力波达到进气门时即开启进气门,则会明显提高进气充量。实验证明,进气管长,压力波也长,可使发动机低、中速区段内的功率增大;进气管短时,压力波也短,可使发动机高转速区段内的功率增大。进气惯性增压控制系统(ACIS)就是在节气门已全开的情况下,利用进气的空气谐振,进一步加大充气量,使低速运转时进气管长,而高速运转时则进气管短。可控的进气谐振近年来发展很快,形式也很多,其工作原理大体上可分为两种。一种是根据发动机转速和负荷的变化情况,自动地改变进气管的有效长度;另一种是可变波长的谐波控制进气系统。
改变进气管有效长度的ACIS:低转速时,ECU使进气控制阀片关闭,进气流经较长的管道;高转速时阀片打开,由于流动阻力的不同,进气会自动地大部分经由阀片直接流入进气歧管,从而使有效长度变短。这种方法可以在高、低转速时均获得高的充量系数,从而提高转矩。
进气谐波波长可变的ACIS:当空气室出口的控制阀关闭时,进气管内的脉动压力波传递长度为空气滤清器到进气门的距离,这一距离较长,适应发动机中、低速工况形成气体动力增压效果。当控制阀打开时,接通真空罐,打开进气增压控制阀。由于大容量空气室的参与,在进气道控制阀处形成气帘,使进气脉动压力只能在空气室出口和进气门之间传播,缩短了压力波的传播距离,以满足发动机高速工况下的气体动力增压要求
9.简述电子控制共轨式柴油喷射系统的原理并写出它的主要特点。
原理:电控共轨喷油系统是高压柴油喷射系统的一种,它摒弃了传统使用的直列泵系统,而代之以用一供油泵建立一定油压后将柴油送到各缸共用的高压油管内,再由共轨把柴油送入各缸的喷油器。系统采用的是压力-时间计量原理,ECU根据工况、油温、空气温度等信号,由油压传感器测出的压力值并输送给ECU,并使所测得的压力与发动机工况所给定的油压脉谱图比较,ECU给出信号控制电磁式柴油泵控制阀的启闭,来调整高压油泵的供油量,以改变共轨油道中的油压,使油压为最佳值。 特点:(1)喷油压力柔性可调 (2)喷射压力高 (3)可柔性控制喷油规律 (4)控制精度高 4.写出汽车滑动率的定义式,并说明汽车纯滚动和纯滑动时定义式中各参数的值。 定义式:s=v-rw ×100% v
式中s-车轮的滑动率
v-车轮中心的纵向速度 r-车轮的自由滚动半径 w-车轮的转动角度
当车轮纯滚动时,v=rw;s=0;当车轮抱死纯滑动时,w=0,s=100%.
5.根据自动变矩器的性能曲线图,说明其变矩范围,耦合范围及锁止时刻各属于(A、B、C)哪个区间,并说明在每个范围内变矩器的作用。
5. 简述常见自动变速器控制模式中经济模式与动力模式的区别。
答:经济模式:这种控制模式是以汽车获得最佳燃油经济性为目标来设计换挡规律的。当自动变速器在经济模式状态下工作时,其换挡规律应能使发动机在汽车行驶过程中经常处在经济转速范围内运转,从而提高了燃油经济性。
动力模式:这种控制模式是以汽车获得最大的动力性为目标来设计换挡规律的。在这种控制模式下,自动变速器的换挡规律能使发动机在汽车行驶过程中经常处在大功率范围内运转,从而提高了汽车的动力性能和爬坡能力。
5.简述ABS系统的优点。 答:(1)能缩短汽车的制动距离
(2)能增加驾驶员在制动过程中控制转向盘、绕开障碍物的功能 (3)能保证汽车制动时的方向稳定性
5.简述一般车辆(如实验室中的桑塔纳模型)ABS的通道布置形式和管路调节方式,并说明为什么要这样布置。
(1)四通道ABS
对应于双制动管路的H型(前后)或X型(对角)两种布置形式,四通道ABS也有两种布置形式。为了对四个车轮的制动压力进行独立控制,在每个车轮上各安装一个转速传感器,并在通往各制动轮缸的制动管路中各设置一个制动压力调节分装置(通道)。由于四通道ABS可以最大程度地利用每个车轮的附着力进行制动,因此汽车的制动效能最好。但在附着系数分离(两侧车轮的附着系数不相等)的路面上制动时,由于同一轴上的制动力不相等,使得汽车产生较大的偏转力矩而产生制动跑偏。因此,ABS通常不对四个车轮进行独立的制动压力调节。 (2)三通道ABS
四轮ABS大多为三通道系统,而三通道系统都是对两前轮的制动压力进行单独控制,对两后轮的制动压力按低选原则一同控制。在按对角布置的双管路制动系统中,虽然在通往四个制动轮缸的制动管路中各设置一个制动压力调节分装置,但两个后制动压力调节分装置却是由电子控制装置一同控制的,实际上仍是三通道ABS。由于三通道ABS对两后轮进行一同控制,对于后轮驱动的汽车可以在变速器或主减速器中只设置一个转速传感器来检测两后轮的平均转速。 汽车紧急制动时,会发生很大的轴荷转移(前轴荷增加,后轴荷减小),使得前轮的附着力比后轮的附着力大很多(前置前驱动汽车的前轮附着力约占汽车总
附着力的70%—80%)。对前轮制动压力进行独立控制,可充分利用两前轮的附着力对汽车进行制动,有利于缩短制动距离,并且汽车的方向稳定性却得到很大改善。 (3)双通道ABS
在按前后布置的双管路制动系统的前后制动管路中各设置一个制动压力调节分装置的双通道ABS,分别对两前轮和两后轮进行一同控制。两前轮可以根据附着条件进行高选和低选转换,两后轮则按低选原则一同控制。对于后轮驱动的汽车,可以在两前轮和传动系中各安装一个转速传感器。当在附着系数分离的路面上进行紧急制动时,两前轮的制动力相差很大,为保持汽车的行驶方向,驾驶员会通过转动转向盘使前轮偏转,以求用转向轮产生的横向力与不平衡的制动力相抗衡,保持汽车行驶方向的稳定性。但是在两前轮从附着系数分离路面驶入附着系数均匀路面的瞬间,以前处于低附着系数路面而抱死的前轮的制动力因附着力突然增大而增大,由于驾驶员无法在瞬间将转向轮回正,转向轮上仍然存在的横向力将会使汽车向转向轮偏转方向行驶,这在高速行驶时是一种无法控制的危险状态。
多用于制动管路对角布置的汽车上的双通道ABS,两前轮独立控制,制动液通过比例阀(P阀)按一定比例减压后传给对角后轮。对于采用此控制方式的前轮驱动汽车,如果在紧急制动时离合器没有及时分离,前轮在制动压力较小时就趋于抱死,而此时后轮的制动力还远未达到其附着力的水平,汽车的制动力会显著减小。而对于采用此控制方式的后轮驱动汽车,如果将比例阀调整到正常制动情况下前轮趋于抱死时,后轮的制动力接近其附着力,则紧急制动时由于离合器往往难以及时分离,导致后轮抱死,使汽车丧失方向稳定性。由于双通道ABS难以在方向稳定性、转向操纵能力和制动距离等方面得到兼顾,因此目前很少被采用。 (4)单通道ABS
所有单通道ABS都是在前后布置的双管路制动系统的后制动管路中设置一个制动压力调节装置,对于后轮驱动的汽车只需在传动系中安装一个转速传感器,单通道ABS一般对两后轮按低选原则一同控制,其主要作用是提高汽车制动时的方向稳定性。在附着系数分离的路面上进行制动时,两后轮的制动力都被限制在处于低附着系数路面上的后轮的附着力水平,制动距离会有所增加。由于前制动轮缸的制动压力未被控制,前轮仍然可能发生制动抱死,所以汽车制动时的转向操作能力得不到保障。但由于单通道ABS能够显著地提高汽车制动时的方向稳定性,又具有结构简单、成本低的优点,因此在轻型货车上得到广泛应用。
6.简述主动悬架系统与普通悬架系统的区别。
主动悬架是一种具有做功能力的悬架,不同于单纯地吸收能量、缓和冲击的传统悬架系统。它在下述几方面使汽车性能得到改善:
(1) 悬架刚度可以设计得很小,是车身具有较低的固有频率,以保证正常行驶时的乘坐舒适性。
(2) 采用主动悬架系统时,因不必兼顾正常行驶时汽车的舒适性,可将汽车抗侧倾、抗纵摆的刚度设
计得较大,因而提高了汽车的操纵稳定性,使汽车的行驶安全性得以提高
(3) 汽车载荷变化时,主动悬架系统能自动维持车身高度不变,汽车即使在凹凸不平道路上行驶也可
保持车身平稳
(4) 普通汽车在制动时车头向下俯冲,由于前后轴载荷发生变化,使后轮与地面的附着条件恶化,延
长了制动过程。主动悬架系统可以在制动时使车尾下沉,充分利用车轮与地面的附着条件,加速制动过程,缩短制动距离
(5) 主动悬架可使车轮与地面保持良好接触,即车轮跳离地面的倾向减小,因而可提高车轮与地面的
附着力,从而提高了汽车抵抗侧滑的能力
7.根据转向操纵力的特性图,说明汽车动力转向装置在汽车行驶中的作用。

