知识、考点、题型篇 - 练透高考必会题型(理)

2026/1/24 8:01:15

知识、考点、题型篇——练透高考必会题型(理)

BC=1,E,F分别是A1C1,BC的中点.

(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.

第29练 完美破解立体几何证明题

[内容精要] 立体几何中的题目最主要的两点就是证明和计算,其中证明主要是来证明空间中的点、线、面间的平行或垂直关系.本节就来探讨空间中的位置关系的证明问题. [典例剖析]

题型一 空间中的平行问题

例1 在如图所示多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1. (1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明.(2)求多面体ABCDE的体积. 题型二 空间中的垂直问题

例2 如图,三棱柱ABC-A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.(1)求证:平面AA1B1B⊥平面BB1C1C.(2)若AB=2,求三棱柱ABC-A1B1C1的体积.

题型三 空间中的平行、垂直综合问题

例3 在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.

(1)求证:平面EFG∥平面PMA;(2)求证:平面EFG⊥平面PDC; (3)求三棱锥P-MAB与四棱锥P-ABCD的体积之比. [精题狂练]

1.若平面α∥平面β,直线a?α,点B∈β,则在β内过点B的所有直线中( ) A.不一定存在与a平行的直线 B.只有两条与a平行的直线 C.存在无数条与a平行的直线 D.存在唯一与a平行的直线

2.在正方体ABCD—A1B1C1D1中,E是棱AB上的动点,则直线A1D与直线C1E所成的角等于( ) A.60° B.90° C.30° D.随点E的位置而变化

3.已知α、β是两个不同的平面,给出下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a、b,a?α,b?β,a∥β,b∥α;④存在两条异面直线a、b,a?α,b?β,a∥β,b∥α,可以推出α∥β的是( ) A.①③ B.②④ C.①④ D.②③

4.如图,在正方形ABCD中,E、F分别是BC、CD的中点,AC∩EF=G.现在沿AE、EF、FA把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为P,则在四面体P-AEF中必有( )

A.AP⊥△PEF所在平面

B.AG⊥△PEF所在平面

第 45 页 共 45 页

C.EP⊥△AEF所在平面 D.PG⊥△AEF所在平面

5.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( ) A.①② B.①②③ C.① D.②③

6.如图,若Ω是长方体ABCD—A1B1C1D1被平面EFGH截去几何体EB1F-HC1G所得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( ) A.EH∥FG B.四边形EFGH是矩形 C.Ω是棱柱 D.Ω是棱台 7.如图,在空间四边形ABCD中,M∈AB,N∈AD,若

AMAN

=,则直线MN与平面BDC的位置关系是________. MBND

8.如图,正方体ABCD—A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于______.

9.如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.

其中正确的有________(把所有正确的序号都填上). 10.给出命题:

①在空间中,垂直于同一平面的两个平面平行;

②设l,m是不同的直线,α是一个平面,若l⊥α,l∥m,则m⊥α;

③已知α,β表示两个不同平面,m为平面α内的一条直线,“α⊥β”是“m⊥β”的充要条件; ④在三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在平面ABC内的射影是△ABC的垂心;

⑤a,b是两条异面直线,P为空间一点,过P总可以作一个平面与a,b之一垂直,与另一条平行. 其中,正确的命题是________.(只填序号)

11.如图所示,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.

求证:(1)AN∥平面A1MK; (2)平面A1B1C⊥平面A1MK.

12.(2014·课标全国Ⅱ)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1)证明:PB∥平面AEC;

(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.

第 46 页 共 46 页

知识、考点、题型篇——练透高考必会题型(理)

第30练 空间向量解决立体几何问题两妙招

——“选基底”与“建系”

[内容精要] 向量作为一个工具,其用途是非常广泛的,可以解决现高中阶段立体几何中的大部分问题,不管是证明位置关系还是求解问题.而向量中最主要的两个手段就是选基底与建立空间直角坐标系,本节我们就看如何利用这两个手段来解决立体几何问题. [典例剖析]

题型一 选好基底解决立体几何问题

例1 如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.(1)求证:MN⊥AB,MN⊥CD;(2)求MN的长;(3)求异面直线AN与CM夹角的余弦值. 题型二 建立空间直角坐标系解决立体几何问题

例2 如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,E,F分别是PC,PD的中点,PA=AB=1,BC=2. (1)求证:EF∥平面PAB; (2)求证:平面PAD⊥平面PDC. 题型三 综合应用问题

例3 如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点. (1)求证:B1E⊥AD1;

(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由. [精题狂练]

1.下列各组向量共面的是( )

A.a=(1,2,3),b=(3,0,2),c=(4,2,5) B.a=(1,0,0),b=(0,1,0),c=(0,0,1) C.a=(1,1,0),b=(1,0,1),c=(0,1,1) D.a=(1,1,1),b=(1,1,0),c=(1,0,1) →→

2.如图,在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若AB=a,AD=b,→→

AA1=c,则下列向量中与BM相等的向量是( )

11111111

A.-a+b+c B.a+b+c C.-a-b+c D.a-b+c

22222222

3.如图,已知正三棱柱ABC—A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是________.

4.P是二面角α-AB-β棱上的一点,分别在平面α、β上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α-AB-β的大小为________. 5.如图所示,正四面体V-ABC的高VD的中点为O,VC的中点为M.

第 47 页 共 47 页

(1)求证:AO、BO、CO两两垂直; →→

(2)求〈DM,AO〉.

6.如图所示,平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长度都为1,且两两夹角为60°. (1)求AC1的长;

(2)求BD1与AC夹角的余弦值.

7.(2014·课标全国Ⅰ)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.

(1)证明:AC=AB1;

(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.

8.(2014·山东)如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.

(1)求证:C1M∥平面A1ADD1;

(2)若CD1垂直于平面ABCD且CD1=3,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值. 9.如图所示,在直三棱柱ABC-A1B1C1中,CA=4,CB=4,CC1=22,∠ACB=90°,点M在线段A1B1上.

(1)若A1M=3MB1,求异面直线AM和A1C所成角的余弦值; (2)若直线AM与平面ABC1所成角为30°,试确定点M的位置.

10.(2013·北京)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5. (1)求证:AA1⊥平面ABC;

(2)求二面角A1-BC1-B1的余弦值;

BD(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.

BC1

第31练 空间角的突破方略

[内容精要] 空间角包括异面直线所成的角,线面角以及二面角,在高考中频繁出现,也是高考立体几何题目中的难点所在.掌握好本节内容:首先要理解这些角的概念,其次要弄清这些角的范围,最后才是求解这些角. [典例剖析]

题型一 异面直线所成的角

例1 在棱长为a的正方体ABCD-A1B1C1D1中,求异面直线BA1与AC所成的角. 题型二 直线与平面所成的角

例2 如图,已知四棱锥P—ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD的中点.

第 48 页 共 48 页


知识、考点、题型篇 - 练透高考必会题型(理).doc 将本文的Word文档下载到电脑
搜索更多关于: 知识、考点、题型篇 - 练透高考必会题型(理) 的文档
相关推荐
相关阅读
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 10

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219