Ê®×ÖÏà³Ë·¨·Ö½âÒòʽ
1£®¶þ´ÎÈýÏîʽ £¨1£©¶àÏîʽax?bx?c£¬³ÆÎª×Öĸ µÄ¶þ´ÎÈýÏîʽ£¬ÆäÖÐ ³ÆÎª¶þ´ÎÏ Ϊһ´ÎÏ Ϊ³£ÊýÏ
ÀýÈ磺x?2x?3ºÍx?5x?6¶¼ÊǹØÓÚxµÄ¶þ´ÎÈýÏîʽ£®
£¨2£©ÔÚ¶àÏîʽx2?6xy?8y2ÖУ¬Èç¹û°Ñ ¿´×÷³£Êý£¬¾ÍÊǹØÓÚ µÄ¶þ´ÎÈýÏîʽ£»Èç¹û°Ñ ¿´×÷³£Êý£¬¾ÍÊǹØÓÚ µÄ¶þ´ÎÈýÏîʽ£®
£¨3£©ÔÚ¶àÏîʽ2ab?7ab?3ÖУ¬°Ñ ¿´×÷Ò»¸öÕûÌ壬¼´ £¬¾ÍÊǹØÓÚ µÄ¶þ´ÎÈýÏîʽ£®Í¬Ñù£¬¶àÏîʽ(x?y)2?7(x?y)?12£¬°Ñ ¿´×÷Ò»¸öÕûÌ壬¾ÍÊǹØÓÚ µÄ¶þ´ÎÈýÏîʽ£®
2£®Ê®×ÖÏà³Ë·¨µÄÒÀ¾ÝºÍ¾ßÌåÄÚÈÝ (1)¶ÔÓÚ¶þ´ÎÏîϵÊýΪ1µÄ¶þ´ÎÈýÏîʽx2?(a?b)x?ab?(x?a)(x?b) ·½·¨µÄÌØÕ÷ÊÇ¡°²ð³£ÊýÏ´ÕÒ»´ÎÏ
µ±³£ÊýÏîΪÕýÊýʱ£¬°ÑËü·Ö½âΪÁ½¸öͬºÅÒòÊýµÄ»ý£¬ÒòʽµÄ·ûºÅÓëÒ»´ÎÏîϵÊýµÄ·ûºÅÏàͬ£» µ±³£ÊýÏîΪ¸ºÊýʱ£¬°ÑËü·Ö½âΪÁ½¸öÒìºÅÒòÊýµÄ»ý£¬ÆäÖоø¶ÔÖµ½Ï´óµÄÒòÊýµÄ·ûºÅÓëÒ»´ÎÏîϵÊýµÄ·ûºÅÏàͬ£® (2)
¶Ô
ÓÚ
¶þ
´Î
Ïî
ϵ
Êý
²»
ÊÇ
1
µÄ
¶þ
´Î
Èý
Ïî
ʽ
22222ax2?bx?c?a1a2x2?(a1c2?a2c1)x?c1c2?(a1x?c1)(a2x?c2) ËüµÄÌØÕ÷ÊÇ¡°²ðÁ½Í·£¬´ÕÖм䡱
µ±¶þ´ÎÏîϵÊýΪ¸ºÊýʱ£¬ÏÈÌá³ö¸ººÅ£¬Ê¹¶þ´ÎÏîϵÊýΪÕýÊý£¬È»ºóÔÙ¿´³£ÊýÏ ³£ÊýÏîΪÕýÊýʱ£¬Ó¦·Ö½âΪÁ½Í¬ºÅÒòÊý£¬ËüÃǵķûºÅÓëÒ»´ÎÏîϵÊýµÄ·ûºÅÏàͬ£» ³£ÊýÏîΪ¸ºÊýʱ£¬Ó¦½«Ëü·Ö½âΪÁ½ÒìºÅÒòÊý£¬Ê¹Ê®×ÖÁ¬ÏßÉÏÁ½ÊýÖ®»ý¾ø¶ÔÖµ½Ï´óµÄÒ»×éÓëÒ»´ÎÏîϵÊýµÄ·ûºÅÏàͬ
×¢Ò⣺ÓÃÊ®×ÖÏà³Ë·¨·Ö½âÒòʽ£¬»¹Òª×¢Òâ±ÜÃâÒÔÏÂÁ½ÖÖ´íÎó³öÏÖ£ºÒ»ÊÇûÓÐÈÏÕæµØÑéÖ¤½»²æÏà³ËµÄÁ½¸ö»ýµÄºÍÊÇ·ñµÈÓÚÒ»´ÎÏîϵÊý£»¶þÊÇÓÉÊ®×ÖÏà³Ëд³öµÄÒòʽ©д×Öĸ£® ¶þ¡¢µäÐÍÀýÌâ Àý1 °ÑÏÂÁи÷ʽ·Ö½âÒòʽ£º
22(1)x?2x?15£» (2)x?5xy?6y£®
2
Àý2 °ÑÏÂÁи÷ʽ·Ö½âÒòʽ£º
(1)2x?5x?3£» (2)3x?8x?3£®
Àý3 °ÑÏÂÁи÷ʽ·Ö½âÒòʽ£º
(1)
(2)7(x?y)3?5(x?y)2?2(x?y)£»
(3)(a2?8a)2?22(a2?8a)?120£®
Àý4 ·Ö½âÒòʽ£º(x2?2x?3)(x2?2x?24)?90£®
Àý5 ·Ö½âÒòʽ6x?5x?38x?5x?6£®
Àý6 ·Ö½âÒòʽx?2xy?y?5x?5y?6£®
Àý7 ·Ö½âÒòʽ£ºca(c£a)£«bc(b£c)£«ab(a£b)£®
Àý8¡¢ÒÑÖªx?6x?x?12ÓÐÒ»¸öÒòʽÊÇx?ax?4£¬ÇóaÖµºÍÕâ¸ö¶àÏîʽµÄÆäËûÒòʽ£®
42222x4?10x2?9£»
43222
ÊÔÒ»ÊÔ£º °ÑÏÂÁи÷ʽ·Ö½âÒòʽ£º
(1)2x2?15x?7 (2) 3a2?8a?4 (3) 5x2?7x?6 (4) 6y2?11y?10
(5) 5a2b2?23ab?10 (6) 3a2b2?17abxy?10x2y2 (7) x2?7xy?12y2
(8) x4?7x2?18 (9) 4m2?8mn?3n2 (10) 5x5?15x3y?20xy2
¿ÎºóÁ·Ï° Ò»¡¢Ñ¡ÔñÌâ
1£®Èç¹ûx2?px?q?(x?a)(x?b)£¬ÄÇôpµÈÓÚ ( )
A£®ab B£®a£«b C£®£ab D£®£(a£«b)
2£®Èç¹ûx?(a?b)?x?5b?x?x?30£¬ÔòbΪ ( )
22A£®5 B£®£6 C£®£5 D£®6
3£®¶àÏîʽx?3x?a¿É·Ö½âΪ(x£5)(x£b)£¬Ôòa£¬bµÄÖµ·Ö±ðΪ ( ) A£®10ºÍ£2 B£®£10ºÍ2 C£®10ºÍ2 D£®£10ºÍ£2
4£®²»ÄÜÓÃÊ®×ÖÏà³Ë·¨·Ö½âµÄÊÇ ( )
A£®
22x2?x?2 B£®3x2?10x2?3x
2C£®
4x2?x?2
D£®5x?6xy?8y
5£®·Ö½â½á¹ûµÈÓÚ(x£«y£4)(2x£«2y£5)µÄ¶àÏîʽÊÇ ( )
A£®2(x?y)?13(x?y)?20 B£®(2x?2y)?13(x?y)?20 C£®2(x?y)?13(x?y)?20 D£®2(x?y)?9(x?y)?20 6£®½«ÏÂÊö¶àÏîʽ·Ö½âºó£¬ÓÐÏàͬÒòʽx£1µÄ¶àÏîʽÓÐ ( )
¢Ùx?7x?6£» ¢Ú3x?2x?1£» ¢Ûx?5x?6£»
2222222
¢Ü4x?5x?9£» ¢Ý15x?23x?8£» ¢Þx?11x?12 A£®2¸ö B£®3¸ö C£®4¸ö D£®5¸ö ¶þ¡¢Ìî¿ÕÌâ
7£®x?3x?10?__________£®
8£®m?5m?6?(m£«a)(m£«b)£® a£½__________£¬b£½__________£® 9£®2x?5x?3?(x£3)(__________)£® 10£®x?____?2y2?(x£y)(__________)£® 11£®a?222422222na?(_____)?(____?____)2£® m212£®µ±k£½______ʱ£¬¶àÏîʽ3x?7x?kÓÐÒ»¸öÒòʽΪ(__________)£® 13£®Èôx£y£½6£¬xy?173223£¬Ôò´úÊýʽxy?2xy?xyµÄֵΪ__________£® 36Èý¡¢½â´ðÌâ
14£®°ÑÏÂÁи÷ʽ·Ö½âÒòʽ£º
(1)
x4?7x2?6£» (2)
x4?5x2?36£»
(3)4x4?65x2y2?16y4£»
(4)
6a6?7a3b3?8b64224£» (5)
6a4?5a3?4a2£»
(6)4a?37ab?9ab£®
15£®°ÑÏÂÁи÷ʽ·Ö½âÒòʽ£º
(1)(x?3)?4x£» (2)x(x?2)?9£» (3)(3x?2x?1)?(2x?3x?3)£»
(4)
222222222(x2?x)2?17(x2?x)?602 (5)
(x2?2x)2?7(x2?2x)?8
(6)(2a?b)?14(2a?b)?48£®
16£®ÒÑÖªx£«y£½2£¬xy£½a£«4£¬x3?y3?26£¬ÇóaµÄÖµ£®

