此可算得卫星绕地球运动的速率和动能.由于卫星的引力势能是属于系统(卫星和地球)的,要确定特定位置的势能时,必须规定势能的零点,通常取卫星与地球相距无限远时的势能为零.这样,卫星在特定位置的势能也就能确定了.至于卫星的机械能则是动能和势能的总和.
解 (1) 卫星与地球之间的万有引力提供卫星作圆周运动的向心力,由牛顿定律可得
mEmv2 G?m23R?3RE?E则 EK?12mmmv?GE 26RE(2) 取卫星与地球相距无限远(r→∞)时的势能为零,则处在轨道上的卫星所具有的势能为
EP??G(3) 卫星的机械能为
mEm 3REE?EK?EP?GmEmmmmm?GE??GE 6RE3RE6RE3 -27 如图(a)所示,天文观测台有一半径为R 的半球形屋面,有一冰块从光滑屋面的最高点由静止沿屋面滑下,若摩擦力略去不计.求此冰块离开屋面的位置以及在该位置的速度.
分析 取冰块、屋面和地球为系统,由于屋面对冰块的支持力FN 始终与冰块运动的方向垂直,故支持力不作功;而重力P又是保守内力,所以,系统的机械能守恒.但是,仅有一个机械能守恒方程不能解出速度和位置两个物理量;因此,还需设法根据冰块在脱离屋面时支持力为零这一条件,由牛顿定律列出冰块沿径向的动力学方程.求解上述两方程即可得出结果.
解 由系统的机械能守恒,有
mgR?12mv?mgRcosθ (1) 2根据牛顿定律,冰块沿径向的动力学方程为
mv2mgRcosθ?FN? (2)
R冰块脱离球面时,支持力FN =0,由式(1)、(2)可得冰块的角位置
θ?arccos冰块此时的速率为
2?48.2o 3v?gRcosθ?v 的方向与重力P 方向的夹角为
2Rg 3α=90°-θ =41.8°
3 -28 如图所示,把质量m =0.20 kg 的小球放在位置A 时,弹簧被压缩Δl =7.5 ×10 -2 m.然后在弹簧弹性力的作用下,小球从位置A 由静止被释放,
?是半径r =小球沿轨道ABCD 运动.小球与轨道间的摩擦不计.已知BCD0.15 m 的半圆弧,AB 相距为2r.求弹簧劲度系数的最小值.
分析 若取小球、弹簧和地球为系统,小球在被释放后的运动过程中,只有重力和弹力这两个保守内力作功,轨道对球的支持力不作功,因此,在运动的过程中,系统的机械能守恒.运用守恒定律解题时,关键在于选好系统的初态和终态.为获取本题所求的结果,初态选在压缩弹簧刚被释放时刻,这样,可使弹簧的劲度系数与初态相联系;而终态则取在小球刚好能通过半圆弧时的最高点C 处,因为这时小球的速率正处于一种临界状态,若大于、等于此速率时,小球定能沿轨道继续向前运动;小于此速率时,小球将脱离轨道抛出.该速率则可根据重力提供圆弧运动中所需的向心力,由牛顿定律求出.这样,再
由系统的机械能守恒定律即可解出该弹簧劲度系数的最小值.
解 小球要刚好通过最高点C 时,轨道对小球支持力FN =0,因此,有
2mvcmg? (1)
r取小球开始时所在位置A 为重力势能的零点,由系统的机械能守恒定律,有
1122k?Δl??mg?3r??mvc (2) 22由式(1)、(2)可得
k?7mgr?1 ?366N?m2?Δl?3 -29 如图所示,质量为m、速度为v 的钢球,射向质量为m′的靶,靶中心有一小孔,内有劲度系数为k 的弹簧,此靶最初处于静止状态,但可在水平面上作无摩擦滑动.求子弹射入靶内弹簧后,弹簧的最大压缩距离.
分析 这也是一种碰撞问题.碰撞的全过程是指小球刚与弹簧接触直至弹簧被压缩到最大,小球与靶刚好到达共同速度为止,在这过程中,小球和靶组成的系统在水平方向不受外力作用,外力的冲量为零,因此,在此方向动量守恒.但是,仅靠动量守恒定律还不能求出结果来.又考虑到无外力对系统作功,系统无非保守内力作功,故系统的机械能也守恒.应用上述两个守恒定律,并考虑到球与靶具有相同速度时,弹簧被压缩量最大这一条件,即可求解.应用守恒定律求解,可免除碰撞中的许多细节问题.
解 设弹簧的最大压缩量为x0 .小球与靶共同运动的速度为v1 .由动量守恒定律,有
mv??m?m??v1 (1)
又由机械能守恒定律,有
12112mv??m?m??v12?kx0 (2) 222

