第三章课后习题答案

2026/1/19 2:38:52

v2x?2v0x?2x1g?100m?s?1 2hv2y?v1?h?12gt12?14.7m?s?1 t1爆炸后,第二块碎片作斜抛运动,其运动方程为

x2?x1?v2xt2 (5)

y2?h?v2yt2?12gt2 (6) 2落地时,y2 =0,由式(5)、(6)可解得第二块碎片落地点的水平位置

x2 =500 m

3 -13 A、B 两船在平静的湖面上平行逆向航行,当两船擦肩相遇时,两船各自向对方平稳地传递50 kg 的重物,结果是A 船停了下来,而B 船以3.4 m·s-1的速度继续向前驶去.A、B 两船原有质量分别为0.5×103 kg 和1.0 ×103 kg,求在传递重物前两船的速度.(忽略水对船的阻力)

分析 由于两船横向传递的速度可略去不计,则对搬出重物后的船A 与从船B 搬入的重物所组成的系统Ⅰ来讲,在水平方向上无外力作用,因此,它们相互作用的过程中应满足动量守恒;同样,对搬出重物后的船B 与从船A 搬入的重物所组成的系统Ⅱ亦是这样.由此,分别列出系统Ⅰ、Ⅱ的动量守恒方程即可解出结果.

解 设A、B两船原有的速度分别以vA 、vB 表示,传递重物后船的速度分别以vA′ 、vB′ 表示,被搬运重物的质量以m 表示.分别对上述系统Ⅰ、Ⅱ应用动量守恒定律,则有

?mA?m?vA?mvB?mAv?A (1)

?mB?m?vB?mvA?mBv?B? (2)

由题意知vA′ =0, vB′ =3.4 m·s-1 代入数据后,可解得

vA??mBmv?B??0.40m?s?1 2?mB?m??mA?m??mvB??mA?m?mBv?B?mA?m??mB?m??m2?3.6m?s?1

也可以选择不同的系统,例如,把A、B 两船(包括传递的物体在内)视为系统,同样能满足动量守恒,也可列出相对应的方程求解.

3 -14 质量为m′ 的人手里拿着一个质量为m 的物体,此人用与水平面成α角的速率v0 向前跳去.当他达到最高点时,他将物体以相对于人为u 的水平速率向后抛出.问:由于人抛出物体,他跳跃的距离增加了多少? (假设人可视为质点)

分析 人跳跃距离的增加是由于他在最高点处向后抛出物体所致.在抛物的过程中,人与物之间相互作用力的冲量,使他们各自的动量发生了变化.如果把人与物视为一系统,因水平方向不受外力作用,故外力的冲量为零,系统在该方向上动量守恒.但在应用动量守恒定律时,必须注意系统是相对地面(惯性系)而言的,因此,在处理人与物的速度时,要根据相对运动的关系来确定.至于,人因跳跃而增加的距离,可根据人在水平方向速率的增量Δv 来计算.

解 取如图所示坐标.把人与物视为一系统,当人跳跃到最高点处,在向左抛物的过程中,满足动量守恒,故有

?m?m??v0cosα?m?v?m?v?u?

式中v 为人抛物后相对地面的水平速率, v -u 为抛出物对地面的水平速率.得

v0?v0cosα?人的水平速率的增量为

mu

m?m?mu ?m?mΔv?v?v0cosα?而人从最高点到地面的运动时间为

t?所以,人跳跃后增加的距离

v0sinα gΔx?Δvt?mv0sinα

?m?m??g *3 -15 一质量均匀柔软的绳竖直的悬挂着,绳的下端刚好触到水平桌面上.如果把绳的上端放开,绳将落在桌面上.试证明:在绳下落过程中的任意时刻,作用于桌面上的压力等于已落到桌面上绳的重量的三倍.

分析 由于桌面所受的压力难以直接求出,因此,可转化为求其反作用力,即桌面给绳的托力.但是,应注意此托力除了支持已落在桌面上的绳外,还有对dt 时间内下落绳的冲力,此力必须运用动量定理来求.

解 取如图所示坐标,开始时绳的上端位于原点,Oy 轴的正向竖直向下.绳的总长为l,以t 时刻,已落到桌面上长为y、质量为m′的绳为研究对象.这段绳受重力P、桌面的托力FN 和下落绳子对它的冲力F (如图中所示)的作用.由力的平衡条件有

myg?F?FN?0 (1) l为求冲力F,可取dt 时间内落至桌面的线元dy 为研究对象.线元的质量

dm?mdy,它受到重力dP 和冲力F 的反作用力F′的作用,由于F′>>dP,lF?dt?0?故由动量定理得

mvdy (2) l而 F??F? (3)

由上述三式可得任意时刻桌面受到的压力大小为

mmm?FN??FN?yg?v2?3yg?3m?g

lll *3 -16 设在地球表面附近,一初质量为5.00 ×105 kg 的火箭,从尾部喷出气体的速率为2.00 ×103 m·s-1 .(1) 试问:每秒需喷出多少气体,才能使火箭最初向上的加速度大小为4.90 m·s-2 .(2) 若火箭的质量比为6.00,求该火箭的最后速率.

分析 这是一个系统内质量转移的问题.为了讨论火箭的运动规律,仍需建立其在重力场中的动力学方程.为此,以t 时刻质量为m 的火箭为研究对象,它在t→t +Δt 的时间内,将分离成火箭主体(包括尚剩的燃料)和排出的燃料两部分.根据它们的总动量的增量ΣdPi 和系统所受的外力———重力(阻力不计),由动量定理可得到-mg =udm′/dt +mdv/dt(推导从略,见教材),即火箭主体的动力学方程.由于在dt 时间内排出燃料的质量dm′很小,式中m 也就可以视为此刻火箭主体的质量, 而燃料的排出率dm′/dt 也就是火箭质量的变化率-dm/dt.这样,上述方程也可写成u度a0 的条件下,

根据初始时刻火箭的质量m0 ,就可求出燃料的排出率dm/dt.在火箭的质量比( 即t 时刻火箭的质量m 与火箭的初始质量m0之比) 已知的条件下,可算出火箭所经历的时间,则火箭运动的速率可通过对其动力学方程积分后解得.

解 (1) 以火箭发射处为原点,竖直向上为正方向.该火箭在重力场中的动力学方程为

dm?mg?ma.在特定加速dtudm?mg?ma (1) dt因火箭的初始质量为m0 =5.00 ×105 kg, 要使火箭获得最初的加速度 a0 =4.90 m·s-2,则燃气的排出率为

dmm0?g?a0???3.68?103kg?s?1

dtu


第三章课后习题答案.doc 将本文的Word文档下载到电脑
搜索更多关于: 第三章课后习题答案 的文档
相关推荐
相关阅读
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 10

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219