故选B.
点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键. 1.(2013福州)2的倒数是( ) A.
B.﹣ C.2
D.﹣2
考点:倒数.
分析:根据倒数的概念求解. 解答:解:2的倒数是.
故选A.
点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数,0没有倒数.
倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 1.(2013泉州)4的相反数是( ) A.4
B.﹣4 C.
D.
考点:相反数.
分析:根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可. 解答:解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4. 故选B.
点评:主要考查相反数的性质.
相反数的定义为:只有符号不同的两个数互为相反数,0的相反数是0. 1.(2013晋江市)﹣2013的绝对值是( ) A.2013 B.﹣2013
C.
D.
考点:绝对值.
分析:根据负数的绝对值等于它的相反数解答. 解答:解:﹣2013的绝对值是2013. 故选A.
点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 1.(2013昭通)﹣4的绝对值是( ) A.
B.
C.4
D.﹣4
考点:绝对值.
分析:根据绝对值的性质一个负数的绝对值等于这个数的相反数,直接就得出答案. 解答:解:|﹣4|=4. 故选C.
点评:此题主要考查了绝对值的性质,熟练应用绝对值的性质是解决问题的关键. 1.(2013曲靖)某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是( ) A.﹣10℃ B.﹣6℃ C.6℃ D.10℃
考点:有理数的减法.
分析:用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.
解答:解:8﹣(﹣2)=8+2=10℃. 故选D.
点评:本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键. 1.(2013昆明)﹣6的绝对值是( ) A.﹣6 B.6
C.±6
D.
考点:绝对值.
分析:根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数﹣a,解答即可; 解答:解:根据绝对值的性质, |﹣6|=6. 故选B.
点评:本题考查了绝对值的性质,熟记:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
1.(2013红河州)﹣的倒数是( ) A.﹣2 B.2
C.﹣ D.
考点:倒数.
分析:乘积是1的两数互为倒数,由此可得出答案. 解答:解:﹣的倒数为﹣2.
故选A.
点评:此题考查了倒数的定义,属于基础题,注意掌握乘积是1的两数互为倒数. 1.(2013德宏州)﹣2的绝对值是( ) A.﹣ B.﹣2 C.
D.2
考点:绝对值.
分析:根据绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值.则﹣2的绝对值就是表示﹣2的点与原点的距离. 解答:解:|﹣2|=2, 故选:D.
点评:此题主要考查了绝对值,关键是掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 4.(2013云南省)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为( )
A.1.505×10元 B.1.505×10元 C.0.1505×10元 D.15.05×10元 考点:科学记数法—表示较大的数.
9
10
11
9
分析:科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
10
解答:解:将150.5亿元用科学记数法表示1.505×10元. 故选B.
n
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 1.(2013云南省)﹣6的绝对值是( ) A.﹣6 B.6
C.±6
D.
n
考点:绝对值.
分析:根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数﹣a,解答即可; 解答:解:根据绝对值的性质, |﹣6|=6. 故选B.
点评:本题考查了绝对值的性质,熟记:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 1.(2013白银)3的相反数是( ) A.3
B.﹣3 C.
D.﹣
考点:相反数.
分析:根据相反数的意义,3的相反数即是在3的前面加负号. 解答:解:根据相反数的概念及意义可知:3的相反数是﹣3. 故选B.
点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 1.(2013重庆市)在﹣2,0,1,﹣4这四个数中,最大的数是( ) A.﹣4 B.﹣2 C.0 D.1 考点:有理数大小比较.
分析:根据正数大于0,负数小于0,负数绝对值越大越小即可求解. 解答:解:在﹣2、0、1,﹣4这四个数中, 大小顺序为:﹣4<﹣2<0<1, 所以最大的数是1. 故选D.
点评:此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质及数轴可以解决问题. 1.(2013重庆市)在3,0,6,﹣2这四个数中,最大的数是( ) A.0 B.6 C.﹣2 D.3 考点:有理数大小比较.
分析:根据有理数的大小比较法则:①正数都大于0; ②负数都小于0;
③正数大于一切负数;
④两个负数,绝对值大的其值反而小,即可得出答案.
解答:解:3,0,6,﹣2这四个数中,最大的数是6. 故选B.
点评:本题考查了有理数的大小比较,属于基础题,掌握有理数的大小比较法则是关键.
2.(2013北京市)﹣的倒数是( ) A.
B.
C.﹣ D.﹣
考点:倒数.
分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 解答:解:∵(﹣)×(﹣)=1, ∴﹣的倒数是﹣.
故选D.
点评:本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.
倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 1.(2013北京市)在《关于促进城市南部地区加快发展第二阶段行动计划(2013﹣2015)》中,北京市提出了共计约3960亿元的投资计划,将3960用科学记数法表示应为( )
2344
A.39.6×10 B.3.96×10 C.3.96×10 D.0.396×10 考点:科学记数法—表示较大的数.
n
分析:科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解答:解:将3960用科学记数法表示为3.96×10. 故选B.
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 1.(2013乌鲁木齐)|﹣2|的相反数是( ) A.﹣2 B.﹣ C.
D.2
n
3
考点:绝对值;相反数.
分析:相反数的意义:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 解答:解:∵|﹣2|=2, ∴2的相反数是﹣2. 故选A.
点评:本题考查了相反数的意义及绝对值的性质:学生易把相反数的意义与倒数的意义混淆.
8.(2013新疆)若a,b为实数,且|a+1|+
=0,则(ab)
2013
的值是( )
A.0 B.1 C.﹣1 D.±1
考点:非负数的性质:算术平方根;非负数的性质:绝对值.

