4.11. 高层建筑为什么要考虑群体间风压相互干扰?如何考虑?
高层建筑群房屋相互间距较近时,由于尾流作用,引起风压相互干扰,对建筑物产生动力增大效应,使得房屋局部风压显著增大,设计时可将单体建筑物的体型系数us乘以相互干扰增大系数加以考虑。
4.12. 计算顺风向风效应时,为什么要区分平均风和脉动风?
结构顺向的风作用可分解为平均风和脉动风,平均风的作用可通过基本风压反映,基本风压是根据10min平均风速确定的,虽然它已从统计的角度体现了平均重现期为50年的最大风压值,但它没有反映风速中的脉动成分。
脉动风是一种随机动力荷载,风压脉动在高频段的峰值周期约为1~2min,一般低层和多层结构的自振周期都小于它,因此脉动影响很小,不考虑风振影响也不致于影响到结构的抗风安全性。而对于高耸构筑物和高层建筑等柔性结构,风压脉动引起的动力反应较为明显,结构的风振影响必须加以考虑。
4.13. 工程设计中如何考虑脉动风对结构的影响?
对于高耸构筑物和高层建筑等柔性结构,风压脉动引起的动力反应较为显著,必须考虑结构风振影响。《荷载规范》要求,对于结构基本自振周期T1大于0.25s的工程结构,如房屋、屋盖及各种高耸结构;以及对于高度大于30m且高宽比大于1.5的高柔房屋,应考虑风压脉动对结构产生的顺风向风振。
结构风振影响可通过风振系数计算:?z?1??v?z,式中脉动增大系数?可由随机振动理论导出,
?z此时脉动风输入达文波特(Davenport)建议的风谱密度经验公式,也可查表确定。结构振型系数?z可根据结构动力学方法计算,也可采用近似公式或查表确定。脉动影响系数v主要反应风压脉动相关性对结构的影响,可通过随机振动理论分析得到,为方便设计人员进行工程设计,已制成表格,供直接查用。
4.14. 结构横向风振产生的原因是什么?
建筑物或构筑物受到风力作用时,横风向也能发生风振。横风向风振是由不稳定的空气动力作用造成的,它与结构截面形状和雷诺数有关。对于圆形截面,当雷诺数在某一范围内时,流体从圆柱体后分离的旋涡将交替脱落,形成卡门涡列,若旋涡脱落频率接近结构横向自振频率时会引起结构涡激共振。
4.15. 什么叫锁定现象?
在结构产生横向共振反应时,若风速增大,旋涡脱落频率仍维持不变,与结构自振频率保持一致,这一现象称为锁定。在锁定区内,旋涡脱落频率是不变的。只有当风速大于结构共振风速约1.3倍时,旋涡脱落才重新按新的频率激振。
4.16. 什么情况下要考虑结构横风向风振效应?如何进行横风向风振验算?
应根据雷诺数Re的不同情况进行横风向风振验算。当雷诺数增加到Re≥3.5×106,风速进入跨临界范围时,出现规则的周期性旋涡脱落,一旦旋涡脱落频率与结构横向自振频率接近,结构将发生强烈涡激共振,有可能导致结构损坏,危及结构的安全性,必须进行横向风振验算。
跨临界强风共振引起在z高处振型j的等效风荷载可由下列公式确定:
wczj??j2vcr?zj/12800?j(kN/m2)
式中 ?j——计算系数;?zj——在z高处结构的j振型系数;?j——第j振型的阻尼比。
横风向风振主要考虑的是共振影响,因而可与结构不同振型发生共振效应。对跨临界的强风共振,
设计时必须按不同振型对结构予以验算。一般认为低振型的影响占主导作用。只需考虑前4个振型即可满足要求。
4.17. 公路《桥规》中是如何考虑桥梁横向风力作用的?
公路《桥规》按静力方法计算横向风力作用,即考虑基本风速、设计风速重现期换算系数、风载阻力系数、风速高度变化修正系数、地形和地理条件系数以及阵风风速系数后,按横向风压乘以迎风面积获得横向风力。
4.18 什么是桥梁静力风荷载的三分力系数?
桥梁的静力风荷载一般采用三分力来描述,即气流流经桥梁时,由于截面表面的风压分布存在差别,上下表面压强差的面积分就是桥梁所受的升力荷载,而迎风前后表面压强差的面积分则是桥梁所受的风阻力荷载,即通常所说的横风向力;此外,当升力与阻力的合力作用点与桥梁截面的形心不一致时,还会产生对形心的扭矩。三分力系数即是上述静气动力系数,反映桥梁截面在均匀流中承受的静风荷载大小。该系数通常是在风轴坐标系下,由节段模型风洞试验测定获得。
4.19 桥梁风振有哪些振动形式?对结构会产生怎样的影响?
桥梁结构风致振动大致可分为两类,一类是自激发散振动,例如颤振和驰振,振动结构可以不断从气流中获取能量,抵消阻尼对振动的衰减作用,从而使振幅不断加大,导致结构风毁,这实际上是一种空气动力失稳现象,对桥梁危害最大。另一类是限幅振动,例如涡激振动和抖振,涡激振动是由结构尾流中产生的周期性交替脱落的旋涡引起,当一个结构物处于另一个结构物的涡列之中,还会激发出不规则的强迫振动,即抖振。涡振和抖振均可在低风速下发生,虽不具破坏性,但会对杆件接头等连接部位造成疲劳破坏,设计时可通过构造措施解决。
5 地震作用
5.1 试述构造地震成因的局部机制和宏观背景?
构造地震成因的局部机制可以用地壳构造运动来说明,在漫长的地质年代中,地球内部处于不断运动之中,原始水平状的岩层在地应力作用下发生形变;当地应力使岩层产生弯曲变形积累的应力超过本身强度极限时,岩层就发生突然断裂和猛烈错动,岩层中原先积累的应变能全部释放,并以弹性波的形式传到地面,地面随之振动,形成地震。
构造地震成因的宏观背景可以借助板块构造学说来解释。板块构造学说认为,地壳和地幔顶部厚约70~100km的岩石组成了全球岩石圈,岩石圈由大大小小的板块组成,板块下面是塑性物质构成的软流层。软流层中的地幔物质以岩浆活动的形式涌出海岭,推动软流层上的大洋板块在水平方向移动,并在海沟附近向大陆板块之下俯冲,返回软流层。各板块边缘由于地幔对流而互相挤压、碰撞,在板块的交界地区就会产生连绵不断的地震。
5.2 什么地震波?地震波包含了哪几种波?它们的传播特点是什么?对地面运动影响如何?
地震引起的振动以波的形式向震源向各个方面传播并释放能量,这就是地震波。地震波是一种弹性波,它包括在地球内部传播的体波和在地面附近传播的面波。
体波可分为两种形式的波,即纵波(P波)和横波(S波)。纵波在传播过程中,其介质质点的振动方向与波的前进方向一致。纵波又称压缩波,其特点是周期较短,振幅较小。横波在传播过程中,其介质质点的振动方向与波的前进方向垂直。横波又称剪切波,其特点是周期较长,振幅较大。
面波是体波经地层界面多次反射形成的次生波,它包括两种形式的波,即瑞雷波(R波)和乐甫波(L波)。瑞雷波传播时,质点在波的前进方向与地表面法向组成的平面内作逆向椭圆运动;乐甫波传播时,质点在与波的前进方向垂直的水平方向作蛇形运动。
纵波使建筑物产生上下颠簸,横波使建筑物产生水平摇晃,而面波使建筑物既产生上下颠动又产生水平晃动,当横波和面波都到达时振动最为强烈。一般情况下,横波产生的水平振动是导致建筑物破坏的主要因素。
5.3 什么是里氏震级?什么是矩震级?
地震震级是表示地震本身大小的等级,它以地震释放的能量为尺度,根据地震仪记录到的地震波或者断层错位和破裂面积来确定。
里氏震级MS(Richter magnitude scale)是由美国地震学家里克特(Charles Francis Richter)于1935年提出的一种震级标度。它是根据离震中一定距离所观测到的地震波幅度和周期,并且考虑从震源到观测点的地震波衰减,计算出的震源处地震的大小。
里克特给出了震级的原始定义:用标准地震仪在距震中100km处记录到的最大水平地面位移(单振幅,以?m计)的常用对数值。表达式为MS?lgA,式中:MS为震级,即里氏震级;A为地震仪记录到的最大振幅。
(2)矩震级
里氏震级是一种面波震级,在地震强到一定程度的时候,测定的面波震级MS值却很难增加上去了,出现震级饱和。美国学者汉克斯和金森(Hanks and Kanamori)1977年从反映地震断层错动的力学量地震矩M0出发,提出用地震矩测定的震级称为矩震级MW(Moment magnitude scale)。
用宏观的方法测量断层的平均位错和破裂长度,估计断层面积,先计算地震矩M0 = μ D S,式中:M0为为地震矩(N·m);μ为剪切模量;D为震源断裂面积上的平均位错量;S为断裂面积。
矩震级MW定义为:MW = 2/3lgM0-6.06,目前,矩震级已经成为估算大规模地震时最常用的标度,但对于规模小于3.5级的地震一般不使用矩震级。
5.4 什么是地震烈度?震级与烈度两者有何关联?
地震烈度是指某地区地面和各类建筑物遭受一次地震影响的强弱程度,它是按地震造成的后果分类的。我国采用12等级划分的地震烈度表。
地震震级与地震烈度是两个不同的概念,震级表示一次地震释放能量的大小,烈度表示某地区遭受地震影响的强弱程度。震级和烈度只在特定条件下存在大致对应关系。对于浅源地震(震源深度在10~30km)震中烈度I0与震级M之间有如下经验公式:M?0.58I0?1.5。
5.5 什么是地震作用?怎样可以确定地震作用?
地震释放的能量以地震波的形式传到地面,引起结构振动。结构由地震引起的振动称为结构的地震反应,振动过程中作用在结构上的惯性力就是“地震荷载”,它使结构产生内力,发生变形。抗震设计时,结构所承受的“地震荷载”实际上是地震动输入结构后产生的动态作用。按照现行国家标准规定,荷载仅指直接作用,地震对结构施加的影响属间接作用,应把结构承受的“地震荷载”称为地震作用。
5.6 地震系数和动力系数的物理意义是什么?
地震系数k是地面运动最大加速度与重力加速度的比值,即k???gxmax/g。
动力系数?是单自由度体系在地震作用下最大反应加速度与地面运动加速度的比值,也就是质点最大加速度比地面最大加速度的放大倍数,即??Sa/??gx。
max
5.7 影响地震反应谱的因素有哪些?设计用反应谱是如何反映这些因素的影响的?
影响反应谱形状的因素主要有场地条件、震级大小和震中距远近,其中场地条件影响最大。场地土质松软,长周期结构反应较大,谱曲线峰值右移;场地土质坚硬,短周期结构反应较大,谱曲线峰值左
移。另外震级和震中距对谱曲线也有影响,在烈度相同的情况下,震中距较远时,加速度反应谱的峰点偏向较长周期,曲线峰值右移;震中距较近时,峰点偏向较短周期,曲线峰值左移。
设计用反应谱为反映这种影响,根据场地类别和设计地震分组的不同分别给出反应谱参数。
5.8 简述确定结构地震作用的底部剪力法和振型分解反应谱法的基本原理和步骤?
(1)振型分解反应谱法的基本原理和步骤
对于多质点弹性体系建立动力平衡方程,利用振型的正交性,采用以振型为基底的广义坐标,可将联立的运动方程解耦,转化为n个独立方程,再比照单质点体系的求解方法,即可得到多质点体系在地震作用下任一质点的位移反应,该位移反应等于n个相应的单自由度体系相对位移反应与相应振型的线性组合。
利用振型分解反应谱法可确定多质点体系在地震作用下相应于j振型i质点的水平地震最大作用:
Fji??j?jXjiGi 再按“平方之和再开方”的组合公式确定水平地震作用效应,即: SEK??S2j
(2)底部剪力法和振型分解反应谱法的基本原理和步骤
对于高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,可采用底部剪力法计算水平地震作用。底部剪力法仅考虑基本振型先算出作用于结构底部的总剪力,然后将此总剪力按某一规律分配到各个质点。结构底部总剪力按下式计算: FEK??1Geq 各质点水平地震作用:
F?iGiHi?GHjj?1nFEK(1??n)
j
5.9 什么叫鞭端效应?设计时如何考虑这种效应?
地震作用下突出建筑物屋面的附属小建筑物,如电梯间、女儿墙、附墙烟囱等由于重量和刚度突然变小,高振型影响较大,会产生鞭端效应。
结构按底部剪力法计算时,只考虑了第一振型的影响,突出屋出的小建筑物在地震中相当于受到从屋面传来的放大了的地面加速度,采用基底剪力法计算这类小建筑的地震作用效应时应乘以放大系数3。放大系数是针对突出屋面的小建筑物强度验算采用的,局部放大作用不往下传。
5.10 什么叫结构的刚心和质心?结构的扭转地震效应是如何产生的?
结构的刚心是结构抗侧力构件合力作用点的位置,结构的质心是结构所有重力荷载的中心。地震时水平地震力的合力通过结构的质心,而结构抗侧力的合力通过结构的刚心,质心和刚心的偏离使得结构除产生平移振动外,还围绕刚心作扭转振动,形成平扭耦联振动,会加重结构的震害,有时还会成为导致结构破坏的主要原因。《建筑抗震规范》规定对质量和刚度明显不均匀、不对称结构应考虑水平地震作用的扭转效应。
5.11 哪些结构需要考虑竖向地震作用?如何确定竖向地震作用?
在高烈度区,对于高耸结构、高层建筑和大跨及长悬臂结构等对竖向运动敏感的结构物需要考虑竖向地震作用。对于高耸结构、高层建筑可采用建立在竖向反应谱基础上的底部轴力法确定竖向地震作用;

