1974年Evans首次将染色体显带技术和染色体原位杂交联合应用,提高了定位的准确性。20世纪70年代后期人们开始探讨荧光标记的原位杂交,即FISH技术。1981年Harper成功地将单拷贝的DNA序列定位到G显带标本上,标志着染色体定位技术取得了重要进展。20世纪90年代,随着人类基因组计划的进行,由于绘制高分辨人类基因组图谱的需要,FISH技术得到了迅速的发展和广泛应用。 1.原理
FISH(fluorescence in situ hybridization)技术是一种重要的非放射性原位杂交技术。它的基本原理是:如果被检测的染色体或DNA纤维切片上的靶DNA与所用的核酸探针是同源互补的,二者经变性-退火-复性,即可形成靶DNA与核酸探针的杂交体。将核酸探针的某一种核苷酸标记上报告分子如生物素、地高辛,可利用该报告分子与荧光素标记的特异亲和素之间的免疫化学反应,经荧光检测体系在镜下对待测DNA进行定性、定量或相对定位分析。 2.实验流程
FISH样本的制备→探针的制备→探针标记→杂交→染色体显带→荧光显微镜检测→结果分析。 3.特点
原位杂交的探针按标记分子类型分为放射性标记和非放射性标记。用同位素标记的放射性探针优势在于对制备样品的要求不高,可以通过延长曝光时间加强信号强度,故较灵敏。缺点是探针不稳定、自显影时间长、放射线的散射使得空间分辨率不高、及同位素操作较繁琐等。采用荧光标记系统则可克服这些不足,这就是FISH技术。FISH技术作为非放射性检测体系,具有以下优点:1、荧光试剂和探针经济、安全;2、探针稳定,一次标记后可在两年内使用;3、实验周期短、能迅速得到结果、特异性好、定位准确;4、FISH可定位长度在1kb的DNA序列,其灵敏度与放射性探针相当;5、多色FISH通过在同一个核中显示不同的
颜色可同时检测多种序列;6、既可以在玻片上显示中期染色体数量或结构的变化,也可以在悬液中显示间期染色体DNA的结构。
缺点:不能达到100%杂交,特别是在应用较短的cDNA探针时效率明显下降。 4.应用
该技术不但可用于已知基因或序列的染色体定位,而且也可用于未克隆基因或遗传标记及染色体畸变的研究。在基因定性、定量、整合、表达等方面的研究中颇具优势。
FISH 技术手册
目录
一、 生命科学中的“钓鱼”( FISH )技术 ....................... 1 二、 显微镜基础知识及显微照相技术............................. 2 三、 Qbiogene 荧光原位杂交的新型探针 .......................... 3 ? 研究用探针 ................................................ 3 a 、人卫星 DNA 直接染色探针 ................................... 3 b 、人染色体着色探针 .......................................... 4 c 、人端粒特异特 DNA 探针 ......................................7 d 、小鼠染色体探针 ........................................... 9 e 、微切除探针 ............................................. 10 f 、特异性位点探针 ..........................................10 ? 临床用探针 ............................................. 10 a 、产前诊断 ............................................. 10 b 、肿瘤,血液病及其他疾病 ................................. 11 四、 荧光标记试剂及试剂盒 ................................... 20 a 、标记试剂 ............................................. 20 b 、检测试剂 ............................................. 21 c 、荧光标记试剂盒 ........................................ 21 五、 显微镜滤镜 .......................................... 23 六、 荧光原位杂交相关设备 .................................23
一、生命科学中的“钓鱼”( FISH )技术
荧光原位杂交技术( fluorescence in situ Hybridization,FISH )是一种非放射性原位杂交方法,用特殊的荧光素标记 DNA 探针,在染色体、细胞或组织切片标本上进行 DNA 杂交,以检测细胞内 DNA 或 RNA 特定序列存在与否。近年来随着 FISH 所应用的探针种类的不断增多, FISH 技术不仅在细胞遗传学方面,而且还广泛应用于肿瘤的诊断、基因定位等。原有的放射性同位素原位杂交技术存在许多缺点,如每次检测需要重新进行标记,标记步骤繁琐,标记的探针不稳定,需要较长时间的曝光,并且对环境造成污染,在观察结果时,需要较多的细胞分裂相。此外,由于放射性银粒和染色体聚集在不同平面,可能引起计数上的误差。 与之比较, FISH 则具有其不可比拟的优点:
? 操作简便,一步式反应,能迅速得到结果,一次标记后可使用二年。 ? 方法敏感,敏感程度等同甚至超过放射性同位素原位杂交。 ? 在同一标本上,可同时应用几种不同探针,标记不同的颜色。 ? 可用于分裂细胞和静止期细胞的染色体数量及基因改变的研究。
荧光原位杂交技术可以传统技术完美结合: FISH 和细胞免疫化学技术结合,可以同时用多种不同颜色标记不同的核苷酸链和蛋白质,这样可以在单个细胞内同时找到基因的位点,转录和翻译的产物,有助了解核苷酸结构功能以及与蛋白质表达之间的关系。 FISH 技术和 RFLE ( RESTRICT FRAGMENT LENTH POLYMORPHSIM )结合,可以精确地描述染色体长,短臂等结构改变和染色体核型或复杂片段的性质。在基因图谱绘制中, FISH 和 Linkage mapping 结合起来即使对具有高度多形态的基因位点也能较精确地确定下来。 二、显微镜及显微照相技术
荧光信号在高压汞灯的短波激发光下,常引起荧光信号发生淬灭,为防止淬灭的发生,需要将 DAPI 或 PI 稀释于 P - Phenlenediomine 的甘油缓冲液中。对于单拷贝探针的信号需要质量较好的荧光显微镜。如采用双色或多色滤光片可以同时观察 FITC 、 TEXAS - RED 等多种颜色的 FISH 信号。不论是染色体还是单拷贝基因的 FISH 信号均可用高度敏感和高分辨率的彩色胶片摄取,也可通过 CCD ( chargecoupled device )的照片系统或 LASER SCANNING IMAGING SYSTERM (激光扫描共焦成像系统)交摄取的信号储存在计算机内,经软件处理后,将信号叠加显示在荧光屏上。
由于有多种方法标记 DNA 探针,帮一次杂交可以同时观察多个探针的信号,如两个不同的探针分别用 BIOTIN 和 DIGOXIGENIN 标记,杂交后用 AVIDIN - FITC 和抗- DIG - TEXAS - RED 分别与探针上的 BIOTIN 和 TEXAS - RED 信号。采用三种或三种以上不同的半抗原,如 BIOTIN 、 DIG 和 DNP 等标记探针,然后用多种不同颜色的荧光素,如 FITC (绿色), RHODAMINE (红色), CASCADE BLUE (兰色)等结合进行,可同时得到多种不同颜色的荧光信号。

