二、填空题:(本大题共12题,每题4分,满分48分)
7. 4的平方根是 ▲ . 8.分解因式x?9x? ▲ .
—1—
3
9.不等式2x?3?7的解集是 ▲ . 10.方程2x?3?1的根是 ▲ .
11.关于x的方程x?3x?m?0有两个不相等的实数根,则m的取值范围是 ▲ . 12.已知反比例函数的图像经过点(m,3)和(-3,2),则m的值为 ▲ . 13.将二次函数y???x?1??2的图像沿y轴向上平移3个单位,那么平移后的二次函数
22解析式为 ▲ .
14.已知一个样本4,2,7,x,9的平均数为5,则这个样本的中位数为 ▲ .
BDAEC第15题图15.如图,已知点D、E分别为⊿ABC的边AB、AC的中点,设AB?a,
BC?b,则向量AE= ▲ (用向量a、b表示).
16.如图,BE为正五边形ABCDE的一条对角线,则∠ABE= ▲ °.
yABEFCDB第17题图ECO第18题图xADy=x第16题图17.如图,在矩形ABCD中,点F为边CD上一点,沿AF折叠,点D恰好落在BC边上的E点处,若AB=3,BC=5,则tan?EFC的值为 ▲ .
18.如图,在直角坐标系中,⊙P的圆心是P(a,2)(a>0),半径为2;直线y=x被⊙P截得的弦长为23,则a的值是 ▲ . 三、解答题:(本大题共7题,满分78分)
19.(本题满分10分)计算:18?4cos45?????3.14?
20.(本题满分10分)解方程:
—2—
0?1????. ?2??121??1. 2x?1x?1
21.(本题满分10分,第(1)题4分,第(2)题6分) 已知:如图,点D、E分别在线段AC、AB上,
CAD?AC?AE?AB.
(1)求证:⊿AEC∽⊿ADB; (2)AB=4,DB=5,sinC=
DA第21题图EB1,求S?ABD. 322.(本题满分10分)从2011年5月1日起,我市公安部门加大了对“酒后驾车”的处罚力度,出台了不准酒后驾车的禁令.某记者在某区随机选取了几个停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:A.有酒后开车; B.喝酒后不开车或请专业司机代驾;C. 开车当天不喝酒;D. 从不喝酒.将这次调查情况整理并绘制了如下尚不完整的统计图一和图二,请根据相关信息,解答下列问题.
(1)该记者本次一共调查了 名司机; (2)图一中情况D所在扇形的圆心角为 °; (3)补全图二;
(4)在本次调查中,记者随机采访其中的一名司机,则他属情况C的概率是 ; (5)若该区有3万名司机,则其中不违反“酒驾”禁令的人数约为 人. ...
人数100C8?B801|040D202A图一B图二CD情况
23.(本题满分12分,每小题6分)如图,在梯形ABCD中,AD∥BC,BD平分∠ABC,∠BAD的平分线交BC于E,联结ED.
⑴求证:四边形ABED是菱形; DA⑵当∠ABC =60°,EC=BE时,证明:梯形ABCD是等腰梯形.
—3—
BE第23题图C
24.(本题满分12分,每小题4分)在平面直角坐标系中,已知抛物线y??x?2x?c过点A(-1,0);直线l:y??点M;抛物线的顶点为D.
(1)求抛物线的解析式及顶点D的坐标. (2)过点A作AP⊥l于点P,P为垂足,求点P的坐标.
(3)若N为直线l上一动点,过点N作x轴的垂线与抛物线交于点E.问:是否存在这样的点N,使得以点D、M、N、E为顶点的四边形为平行四边形?若存在,求出点N的横坐标;若不存在,请说明理由.
25.(本题满分14分,第(1)、(2)小题各3分,第(3)、(4)小题各4分)
已知:正方形ABCD的边长为1,射线AE与射线BC交于点E,射线AF与射线CD交于点F,∠EAF=45°.
(1)如图1,当点E在线段BC上时,试猜想线段EF、BE、DF有怎样的数量关系?并证明你的猜想.
(2)设BE=x,DF=y,当点E在线段BC上运动时(不包括点B、C),如图1,求y关于x的函数解析式,并指出x的取值范围.
(3)当点E在射线BC上运动时(不含端点B),点F在射线CD上运动.试判断以E为圆心以BE为半径的⊙E和以F为圆心以FD为半径的⊙F之间的位置关系.
(4)当点E在BC延长线上时,设AE与CD交于点G,如图2.问⊿EGF与⊿EFA能否相似,若能相似,求出BE的值,若不可能相似,请说明理由.
F
A DAD45°45°
FG BEECBC
图2 图1
-14321y23x?3与x轴交于点B,与y轴交于点C,与抛物线的对称轴交于4O-11234x第24题图—4—