卢湾区2010学年第一学期九年级数学期末考试
参考答案及评分说明
一、选择题(本大题共6题,每题4分,满分24分)
1.B; 2. B; 3.D; 4.D; 5. D; 6.C. 二、填空题(本大题共12题,每题4分,满分48分)
??10?27.6; 8.?a; 9.下降; 10.y?2?x?3??2; 11.2b?a;
33122512.30; 13.; 14.53; 15.; 16.x?2; 17.; 18.6.
555三、简答题(本大题共4题,每题10分,满分40分)
?25a?5b?c?0,?19. 解法一:由题意得?a?b?c?0,???????????????(3分)
?a?b?c?12.??a?1,?解得?b?6,????????????????????????????(3分)
?c?5.?所以这个抛物线的表达式为y?x2?6x?5??????????????(1分) 配方得y??x?3??4,所以顶点坐标为??3,?4?,???????????(3分) 解法二:设y?a?x?5??x?1?????????????????????(3分) 把x?1,y?12代入上式,得12a?12,a?1,?????????????(2分) 所以,y?x2?6x?5.???????????????????????(2分) 配方得y??x?3??4,所以顶点坐标为??3,?4?,???????????(3分) (求抛物线解析式其他解法评分标准参照此以上解法酌情给分)
22????2???????3?20.(1)AE?a?b,BE?b?a;?????????????(3分,3分)
55(2)画法正确3分,结论1分. ????????????????(3分,1分) 21.解:过点D作DE?AC,垂足为点E.??????????????(1分) 3,CD?5, 5∴DE?3,CE?4,??????????????????????(2分,2分) ∵AC?8,∴AE?4,??????????????????????(1分)
∵?DEC?90?,sin?ACD?
5
∵DE?AC,?ACB?90?,∴DE∥AC,?????????????(1分)
DEAE,??????????????????????????(2分) ?BCAC34∴ ?,∴BC?6.??????????????????????(1分)BC822.(1)证明:∵AB⊥AC,CD⊥BD,∴?BAC??BDC?90?,????(1分) 又∵?AOB??DOC,∴?A??????????????(2分) OB∽?DOC,AOBOAODO∴,∴,???????????????????(1分) ??DOCOBOCO又∵?AOD??BOC,∴?A??????????????(1分) OD∽?BOC,
2AO2(2)∵?BAC?90?,sin?ABO?,∴ ?,?????????(2分)
BO33∴
S?AO?∵?AOD∽?BOC,∴?AOD?? ?,???????????????(2分)
S?BOC?BO?∵S?AOD?4,∴
24S?BOC?2????,∴S?BOC?9.????????????(1分) ?3?2四、解答题(本大题共2题,每题12分,满分24分)
23.解:分别过点A、D作AE?BC,DF?BC,垂足为点E、F.???(2分) ∴AE∥DF,又∵AD∥BC,∴四边形AEFD是平行四边形,?????(1分) ∴AE?DF,∵AD?40cm,EF?AD?40cm,???????????(2分) 设AE?DF?x,∵?AEB?90?,?B?45?,∴BE?x,???????(2分)
DFx,???????(2分) ?tanCtan67.4?5x∵BC?125cm,∴BC?BE?EF?FC?x?40? ?125,??????(2分)
12∵?DFC?90?,?C?67.4?,∴CF?解得x?60,∴AE?DF?60cm.??????????????????(1分) 所以梯形木料ABCD的高为60 cm. 24. 解(1)由题意得,x???4a,∴对称轴为直线x?2;???????(2分) 2a∵点A?0,3?,点B是抛物线上的点,AB∥x轴,
∴AB被直线x?2垂直平分,∴B?4,3?.???????????????(1分)
?c?3,(2)∵抛物线经过点?0,3?,??2,0?,所以有?,?????(2分)
4a?8a?3?0? 6
1?12?a??,解得? 4,∴抛物线的表达式为y??x?x?3.?????????(1分)
4??c?3.(3)∵抛物线的对称轴为直线x?2,∴C?2,4?,??????????(1分) 过点C作CE?y轴,垂足为点E,设对称轴与AB交于点F.?????(1分) ∵AB∥x轴,∴?CFA?90?,∴?CEO??CFA,
CE21CF1CECF,∴?EOC∽?FAC,????(1分) ??,?,∴?OE42AF2OEAF∴?AOC??CAF,????????????????????????(1分)
AOCO当?AOC∽?DAC时,有, ?ADAC又∵
∵AO?3,CO?25,AC?5,∴AD?3?3?,∴D?,3?;???????(1分) 2?2?当?AOC∽?CAD时,有
AOCO, ?ACAD∴AD?10?10?,∴D?,3?,?????????????????????(1分) 3?3??3??10?综上所述满足条件的点D的坐标为?,3?或?,3?.
?2??3?五、(本题满分14分) 25.(1)证明:∵?ABC与?BDE都是等边三角形,
∴?A??C??BDE?60?,????????????????????(1分) ∵?ADF??BDE??C??DBC,∴?ADF??DBC,????????(2分) ∴?BCD∽?DAF.????????????????????????(1分) (2)∵?BCD∽?DAF,∴
BCCD,???????????????(1分) ?ADAF1x ?,????????????(1分)
1?xy∵BC?1,设CD?x,AF?y,∴
∴y?x?x2?0?x?1?.???????????????????????(2分) (3)解法一:∵?ABC与?BDE都是等边三角形,
∴?E??C?60?,?EBD??CBA?60?,∴?EBF??CBD,????(1分) ∴?EBF∽?CBD,∴
BEBF,?????????????????(1分) ?BCBD7
∵BE?BD,BC?1,∴BE2?BF,?????????????????(1分)
S?BEFBE27S?BEF7∵?EBF∽?CBD, ??, ????????(1分)?,∴
S?BCDBC29S?BCD9∴BE2?BF?∴x?x2?72,∴AF?,???????????????????(1分) 99S221127,解得x1?,x2?,∴当x?或时,?BEF?.????(1分)
S?BCD993333解法二:∵△ABC与?BDE都是等边三角形,
∴?E??C?60?,?EBD??CBA?60?,∴?EBF??CBD,????(1分)
S?BEFBE27S?BEF7∴?EBF∽?CBD,∵ ??,????????(1分)?,∴
S?BCDBC29S?BCD97. ?????????????????(1分) 9过点B作BH?AC于点H,????????????????????(1分)
∵BC?1,BE?BD,∴BD2?311,∴DH?,CH?, 262111当点D在线段CH上时,CD?CH?DH???;?????????(1分)
263112当点D在线段CH的延长线上时,CD?CH?DH???,?????(1分)
263∵?C?60?,∴BH?综上所述,当x?
S127或时,?BEF?.
S?BCD933 8

