水热法制备SnO2纳米颗粒及其在气体传感器中的应用

2026/1/14 6:37:50

电子,直至平衡为止.增强型吸附即若气体分子的电子亲和力小于半导体的功函数时,电子将由吸附的气体分子处漂移到半导体表面.半导体表面将聚集多余的电子,造成半导体表面的导电性增加.导致半导体表面电荷耗尽层的消失或减少,半导体电子浓度增加,电导率上升,因此可以根据传导器电导的变化来检测环境中的各种气体.

对气体传感器的研究表明,金属氧化物半导体材料SnO2已趋于成熟化,特别是在CO2,C2H5OH,CO等气体检测方面,为了进一步提高其性能,这方面的工作主要是利用化学修饰改性方法,对现有气敏感膜材料进行掺杂、改性和表面修饰等处理,并对成膜工艺进行改进和优化,提高气体传感器的稳定性和选择性.

在影响气敏性方面有多种因素方面上,掺杂效应的影响最为显著.研究发现为了更好的提高SnO2制成的气敏元件的灵敏度、稳定性和选择性,可尝试掺杂过渡金属阳离子(Fe3+、Cu2+、Ni2+等)[17-20]和贵金属(Pt、Pd、Ag、Sb、In、V等)[21].

耿丽娜等[22]采用水热法、苯胺原位聚合法制备了聚苯胺/二氧化锡(PAn/SnO2)杂化材料,结果表明苯胺单体在SnO2的表面发生原位聚合,得到壳型PAn/SnO2杂化材料.气敏性试验发现,当测试温度升高到90℃时,PAn/SnO2杂化材料对乙醇气体表现出较好的选择性,并且响应、恢复时间短,可逆性好,适于在较宽浓度范围内对乙醇气体进行检测.

邓等[23]发现在SnO2中掺入V2O5可改变元件的电阻,提高稳定性.V2O5含量为0.56wt%时电阻最小.掺碱土金属氧化物的SnO2薄膜元件提高了对乙醇的灵敏度,而对苯、丁烷、液化气、氨气、煤气几乎不敏感,对元件的增敏顺序与碱土金属氧化物的活性顺序一致:MgO>CaO>SrO>BaO.

贾维国[24]等通过控制SbCl3的掺杂量来改变SnO2薄膜的电阻率,当Sb的含量达到10%时,电阻率达到极小值.

Liu等[25]硅片为基片,分别得到了钯、锑、铂铟掺杂的氧化锡薄膜.结果表明,少量掺入这些金属并没有改变SnO2的粒径,但是少量锑的掺入,增加了氧化锡的费米能级,铟和钯的掺杂降低了SnO2的费米能级,而铂的掺入对SnO2的费米能级值没有影响;氢气吸附到薄膜上,不仅改变了锑和钯的化学价态,而且还改变了SnO2的电子结构.

4

方等[26]发现Fe3+的加入对样品晶型的影响,即水热法可以直接制备Fe3+改性的金红石SnO2纳米颗粒,Fe3+进入SnO2的晶格之中形成固溶体.纳米颗粒为单分散状态,具有较大的比表面积,粒径分布均匀,粒径小于10nm;随着Fe3+添加量的增大,样品的粒径减小,样品的比表面积增大,当Fe3+添加量为15%时,样品的比表面积达到259.8m2·g-1.进一步证明,Fe3+的加入有效地抑制了颗粒的长大.添加Fe3+所提高的比表面积对于SnO2的Fe3+气敏性能是非常有利的.

Masayoshi Yuasa等[27]通过光化学沉积法将PdCl42-将钯负载在SnO2表面改变其气敏性.研究发现当钯浓度为0.12%mol时SnO2的气敏性最强.

和等

[28]

采用超声波喷雾技术,以SnCl4·5H2O和CO(NH2)2为前驱原料制备了

氧化锡以及Ce稀土离子掺杂纳米粉体.结果表明,制备的SnO2粒子呈球状,尺寸在10~20nm,纳米颗粒均匀,分散性好.以该粉体为基础制备的相应气敏元件测试表明,纳米SnO2半导体气敏元件对NO2气体有着良好的响应-恢复特性,并且具有较高的灵敏度和较低的工作温度.稀土元素的掺杂一方面可以起到稳定剂的作用,另一方面起活化中心的作用,从而进一步增强元件的气敏特性,掺杂少量稀土元素铈能明显提高纳米SnO2粉体的气敏性能.

除掺杂效应对气体传感器单一的影响外,我们还可通过改变掺杂物的量,空气的质量改善气体传感器方面的气敏性.Hae-Ryong Kim等[29]通过在SnO2中掺杂NiO后的他们发现如下图

图1取自[29]

5

图1为纯的SnO2,0.64NiO- SnO2的和1.27NiO- SnO2的分层球在干燥气氛(空心符号)和25%相对湿度(rh)(实心符号)的气敏性,(气体:50ppm的CO).a1-a4分别为纯SnO2的分层传感器:气体响应(Ra/Rg中)(a1)中,90%的响应时间(τ的恢复时间(τ

recov

res

)(a2)中,90%

)(a3)中,在空气中的电阻(Ra)(a4).b1?b4分别为0.64NiO-的

recov

SnO2分层传感器:Ra / Rg中(b1)中,τres(b2)中,τ

(b3)中,和Ra(b4).C1-C4

recov

分别为1.27NiO-的SnO2分层传感器:Ra/Rg(c1)中,τres(c2)中,τRa(c4)中.

(c3)中,和

图2取自[29]

图2为50ppm下的CO暴露在干燥的空气中(a)和4%的湿空气(b)的1小时的期间的吸收光谱.其中非特异性吸光的较大改变仅对纯物质可见.

在传感器的应用方面,叶晨圣等[30]发现利用热处理过的二氧化锡纳米粒子对甲醇、乙醇和丙醇有很好的探测灵敏度,最低的探测浓度能达到1.7ppm.另外对不同碳链的醇类和探测讯号间有很好的关联性.

6

图3取自[30]

图3为合成的二氧化锡(a)和热处理过的的二氧化锡(b)在220?C下对乙醇的灵敏度进行测试.(A)对25ppm的乙醇进行再现性实验;(B)不同乙醇浓度(1.7-500ppm)的灵敏度变化.

表1取自[30]

表1为热处理过的二氧化锡纳米粒子在220?C下测试甲醇、乙醇和丙醇在不同浓度(1.7ppm到500ppm)的灵敏度,*NA表示未探测.

综上可知,今后就水热法制备金属离子或贵金属改性的SnO2纳米颗粒的气敏性能以及光电性能等方面进行研究将是一个新的方向.直接制备有金属或金属氧化物负载的SnO2纳米颗粒对改善晶体气敏性方面有显著的影响.

3展望

在晶体制备方面,可以通过改变反应条件,添加不同的有机溶剂来制备颗粒较小、更加稳定、比表面积较大的SnO2晶体,如添加其他醇类,或醇类衍生物来改变晶体团聚的方法将是改变粒径的一个新方向.

我们还可以通过多种方法结合制作更为需要的晶体,如De liang Chen[31]等则利用微乳液法与水热法相结合的方法在SnCl4·5H2O中加入戊醇、正己烷、CTAB、尿素以及乙醇,在较温和的条件下制备了晶粒尺寸为几纳米的SnO:粉体,其晶粒分布范围只有3nm.

从半导体气敏传感器的发展情况看,气敏材料的选择性问题,传感器的稳定性问题,与纳米SnO2性能不稳定和粒径较大有关,因此改善SnO2的粒径和稳定性还是当今研究方向的重要内容,同时气敏材料向多功能、薄膜化、集成化、小型化和智能化发展,也要从SnO2性能方面入手.因此,以后的研究开发中纳米技术和薄膜技术将成为主要方向,如果解决了稳定性问题,那成本低、响应时间短、

7


水热法制备SnO2纳米颗粒及其在气体传感器中的应用.doc 将本文的Word文档下载到电脑
搜索更多关于: 水热法制备SnO2纳米颗粒及其在气体传感器中的应用 的文档
相关推荐
相关阅读
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 10

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219