核酸的降解和核苷酸代谢

2026/1/27 11:51:24

第十一章 核酸的降解和核苷酸代谢 核酸的生物功能 DNA、RNA 核苷酸的生物功能 ①合成核酸

②是多种生物合成的活性中间物 糖原合成,UDP-Glc。磷脂合成,CDP-乙醇胺,CDP-二脂酰甘油。

③生物能量的载体ATP、GTP ④腺苷酸是三种重要辅酶的组分 NAD、FAD、CoA

⑤信号分子cAMP、cGMP

食物中的核酸,经肠道酶系降解成各种核苷酸,再在相关酶作用下,分解产生嘌呤、嘧啶、核糖、脱氧核糖和磷酸,然后被吸收。

吸收到体内的嘌呤和嘧啶,大部分被分解,少部分可再利用,合成核苷酸。

人和动物所需的核酸无须直接依赖于食物,只要食物中有足够的磷酸盐,、糖和蛋白质,核酸就能在体内正常合成。

核酸的分解代谢: 核酸 酶 核苷酸酶 核苷磷酸化酶 核酸 核苷酸 核苷 + 磷酸 碱基 + 戊糖-1-磷酸 核酸和核苷酸的分解代谢 核酸的酶促降解

核酸是核苷酸以3’、5’-磷酸二酯键连成的高聚物,核酸分解代谢的第一步就是分解为核苷酸,作用于磷酸二酯键的酶称核酸酶(实质是磷酸二脂酶)。

根据对底物的专一性可分为:核糖核酸酶、脱氧核糖核酸酶、非特异性核酸酶。

根据酶的作用方式分:内切酶、外切酶。 核糖核酸酶

只水解RNA磷酸二酯键的酶(RNase),不同的RNase专一性不同。

牛胰核糖核酸酶(RNaseI),作用位点是嘧啶核苷-3’-磷酸与其它核苷酸间的连接键。

核糖核酸酶T1(RNaseT1),作用位点是3’ -鸟苷酸与其它核苷酸的5’-OH间的键。

脱氧核糖核酸酶

只能水解DNA磷酸二酯键的酶。DNase牛胰脱氧核糖核酸酶(DNaseI)可切割双链和单链DNA。产物是以5’-磷酸为末端的寡核苷酸。

牛胰脱氧核糖核酸酶(DNaseⅠ),降解产物为3’-磷酸为末端的寡核苷酸。

限制性核酸内切酶:细菌体内能识别并水解外源双源DNA的核酸内切酶,产生3ˊ-OH和5ˊ-P。

PstⅠ切割后,形成3ˊ-OH 单链粘性末端。 EcoRⅠ切割后,形成5ˊ-P单链粘性末端。 非特异性核酸酶

既可水解RNA,又可水解DNA磷酸二酯键的核酸酶。 小球菌核酸酶是内切酶,可作用于RNA或变性的DNA,产生3’-核苷酸或寡核苷酸。

蛇毒磷酸二酯酶和牛脾磷酸二脂酶属于外切酶。

蛇毒磷酸二酯酶能从RNA或DNA链的游离的3’-OH逐个水解,生成5’-核苷酸。

牛脾磷酸二脂酶从游离的5’-OH开始逐个水解,生成3’核苷酸。

核苷酸的降解

核苷酸酶 (磷酸单脂酶)

水解核苷酸,产生核苷和磷酸。

非特异性磷酸单酯酶:不论磷酸基在戊糖的2’、3’、5’,都能水解下来。

特异性磷酸单酯酶: 只能水解3’核苷酸或5’核苷酸(3’核苷酸酶、5’核苷酸酶)

核苷酶 两种:

① 核苷磷酸化酶:广泛存在,反应可逆。 核苷磷酸化酶 核苷 + 磷酸 碱基+戊糖-1-磷酸 ② 核苷水解酶:主要存在于植物、微生物中,只水解核糖核苷,不可逆 核苷水解酶 核糖核苷 + H2O 碱基+核糖 嘌呤碱的分解 首先在各种脱氨酶的作用下水解脱氨,脱氨反应可发生在嘌呤碱、核苷及核苷酸水平上。

不同种类的生物分解嘌呤碱的能力不同,因此,终产物也不同。 排尿酸动物:灵长类、鸟类、昆虫、排尿酸爬虫类 排尿囊素动物:哺乳动物(灵长类除外)、腹足类 排尿囊酸动物:硬骨鱼类

排尿素动物:大多数鱼类、两栖类

某些低等动物能将尿素进一步分解成NH3和CO2排出。 植物分解嘌呤的途径与动物相似,产生各种中间产物(尿囊素、尿囊酸、尿素、NH3)。

微生物分解嘌呤类物质,生成NH3、CO2及有机酸(甲酸、乙

酸、乳酸、等)。

嘧啶碱的分解

人和某些动物体内脱氨基过程有的发生在核苷或核苷酸上。脱下的NH3可进一步转化成尿素排出。

嘌呤核苷酸的合成 从头合成

由5’-磷酸核糖-1’-焦磷酸(5’-PRPP)开始,先合成次黄嘌呤核苷酸,然后由次黄嘌呤核苷酸(IMP)转化为腺嘌呤核苷酸和鸟嘌呤核苷酸。

嘌呤环合成的前体:CO2 、甲酸盐、Gln、Asp、Gly A. Gln提供-NH2:N 9

B. Gly:C4、C5、N7 C. 5.10-甲川FHFA:C8 D. Gln提供-NH2:N3 闭环

E CO2:C 6

F. Asp提供-NH2:N 1 G 10-甲酰THFA:C 2

次黄嘌呤核苷酸的合成(IMP)

磷酸核糖焦磷酸激酶 5-磷酸核糖 + ATP 5`-PRPP+AMP 磷酸核糖焦磷酸转酰胺酶(转氨)

5-磷酸核糖焦磷酸 + Gln → 5-磷酸核糖胺 + Glu + ppi

使原来α-构型的核糖转化成β构型 甘氨酰胺核苷酸合成酶

5-磷酸核糖胺+Gly+ATP → 甘氨酰胺核苷酸+ADP+Pi 甘氨酰胺核苷酸转甲酰基酶

甘氨酰胺核苷酸 + N 5 N 10-甲川FH4 + H2O → 甲酰甘氨酰胺核苷酸 + FH4

甲川基可由甲酸或氨基酸供给。 甲酰甘氨脒核苷酸合成酶

甲酰甘氨酰胺核苷酸 + Gln + ATP + H2O → 甲酰甘氨脒核苷酸 + Glu + ADP + pi

此步反应受重氮丝氨酸和6-重氮-5-氧-正亮氨酸不可逆抑制,这两种抗菌素与Gln有类似结构。

P 304 结构式:重氮丝氨酸、6-重氮-5-氧-正亮氨酸

腺苷酸琥珀酸合成酶 IMP+Asp +GTP 腺苷酸琥珀酸+GDP+ Pi 腺苷酸琥珀酸裂解酶 氨基咪唑核苷酸合成酶 从头合成 甲酰甘氨脒核苷酸 + ATP → 5-氨基咪唑核苷酸 + ADP 与嘌呤核苷酸合成不同,在合成嘧啶核苷酸时,首先AMP + 延胡索酸 药物对嘌呤核苷酸合成的影响 + Pi 合成嘧啶环,再与磷酸核糖结合,生成尿嘧啶核苷酸,最后由尿嘧筛选抗肿瘤药物,肿瘤细胞核酸合成速度快,药物能抑制。 (1)~(5)第一阶段,合成第一个环 啶核苷酸转化为胞嘧啶核苷酸和胸腺嘧啶脱氧核苷酸。 ①羽田杀菌素 氨基咪唑核苷酸羧化酶 合成前体:氨甲酰磷酸、Asp (P309图18-7嘧啶环的元素来与Asp竞争腺苷酸琥珀酸合成酶,阻止次黄嘌呤核苷酸转化成5-氨基咪唑核苷酸+CO2 → 5-氨基咪唑-4羧酸核苷酸 源) AMP。 氨基咪唑琥珀基氨甲酰核苷酸合成酶 尿嘧啶核苷酸的合成

②重氮乙酰丝氨酸、6-重氮-5-氧正亮氨酸,是Gln的结构类似5-氨基咪唑-4-羧酸核苷酸+Asp+ATP → 5-氨基咪唑4-(N-琥珀氨甲酰磷酸的合成 物,抑制Gln参与的反应。 基)氨甲酰核苷酸 氨甲酰磷酸合成酶 ③氨基蝶呤、氨甲蝶呤 腺苷酸琥珀酸裂解酶 -氨甲酰磷酸+Glu + 2ADP+ Pi 叶酸的结构类似物,能与二氢叶酸还原酶发生不可逆结合,阻Gln + HCO3 + 2A5-氨基咪唑-4-(N-琥珀基)氨甲酰核苷酸 → 5-氨基咪唑-4-氨 TP 止FH4的生成,从而抑制FH4参与的各种一碳单位转移反应。 甲酰核苷酸+延胡索酸 (1) 天冬氨酸转氨甲酰酶

补救途径 氨基咪唑氨甲酰核苷酸转甲酰基酶 天冬氨酸转氨甲酰酶 10

利用已有的碱基和核苷合成核苷酸 5-氨基咪唑-4-氨甲酰核苷酸+N-甲酰FH4 → 5-甲酰胺基咪唑 + Asp 氨甲酰磷酸氨甲酰天冬氨酸+ Pi 磷酸核糖转移酶途径(重要途径) -4-氨甲酰核苷酸+FH4 嘌呤碱和5-PRPP在特异的磷酸核糖转移酶的作用下生成嘌呤次黄嘌呤核苷酸环水解酶 (2) 二氢乳清酸酶 核苷酸 5-甲酰胺基咪唑-4-氨甲酰核苷酸 → 次黄嘌呤核苷酸+H2O 二氢乳清酸酶 核苷磷酸化酶 氨甲酰二氢乳清酸 + H2O 总反应式: 天冬氨酸 +磷酸 5-磷酸核糖 + CO2 + 甲川THFA + 甲酰THFA + 2Gln + Gly + 嘌呤核苷嘌呤碱+戊糖-1-磷酸 Asp + 5ATP → (3) 二氢乳清酸脱氢酶(辅基:FAD、FMN) 腺嘌呤磷酸核糖转移 IMP + 2THFA + 2Glu + 延胡索酸 + 4ADP + 1AMP + 4Pi + PPi 腺嘌呤核苷酸的合成(AMP) 二氢乳清酸脱氢酶/FAD、FMN 腺嘌呤+5-PRPP AMP + PPi +二氢乳清酸 + NAD 乳清酸+ NADH + H+ 从头合成:CO2 、2个甲酸盐、2个Gln、1个Gly、(1+1)个 核苷激酶途径(但在生物体内只发现有腺苷激酶) Asp、(6+1)个ATP,产生2个Glu、(1+1)个延胡索酸。 (4) 乳清苷酸焦磷酸化酶 腺嘌呤在核苷磷酸化酶作用下转化为腺嘌呤核苷,后者在核苷Asp的结构类似物羽田杀菌素,可强烈抑制腺苷酸琥珀酸合成

乳清苷酸焦磷酸化酶/Mg2+ 磷酸激酶的作用下与ATP反应,生成腺嘌呤核苷酸。 酶的活性,阻止AMP生成。 乳清酸 + PRPP 乳清苷酸 + PPi 羽田杀菌素: N-羟基-N-甲酰-Gly 核苷磷酸化酶 鸟嘌呤核苷酸的合成 (P307结构式) (5) 乳清苷酸脱羧酶 碱基+核糖-1-磷酸 核苷+ Pi 乳清苷酸脱羧酶 IMP脱氢酶 嘌呤核苷酸的从头合成与补救途径之间存在平衡。Lesch-Nyan 酸 乳清苷UMP + CO2 ++黄嘌呤核苷酸 + NADH + H IMP + NAD +H2O 综合症就是由于次黄嘌呤:鸟嘌呤磷酸核糖转移酶缺陷,AMP合成 增加,大量积累尿酸,肾结石和痛风。 胞嘧啶核苷酸的合成

尿嘧啶核苷三磷酸可直接与NH3(细菌)或Gln(植物)反应,

腺苷激酶 生成胞嘧啶核苷三磷酸。

腺苷 +ATP 腺苷酸+ ADP GMP合成酶 尿嘧啶核苷酸激酶/Mg2+ 黄嘌呤核苷酸 + Gln(或NH4+)+ ATP + H2O GMP + Glu + AMP + PPi UMP+ ATP UDP + ADP AMP、GMP生物合成的调节 5-磷酸核糖焦磷酸转酰胺酶是关键酶,可被终产物AMP、GMP 次黄嘌呤:鸟嘌呤磷酸核糖转移酶 反馈抑制。 次黄嘌呤(鸟嘌呤)+ 5-PRPP IMP(GMP)+ PPi AMP过量可反馈抑制自身的合成。 CTP合成酶 + 嘧啶核苷酸的合成 GMP过量可反馈抑制自身的合成。 UTP + Gln(NH)+ ATP + HO CTP + Glu +ADP+ Pi 42

核苷二磷酸激酶/Mg2+ UDP + A TP UTP + ADP

嘧啶核苷酸生物合成的调节(大肠杆菌) 氨甲酰磷酸合成酶: 受UMP反馈抑制

天冬氨酸转氨甲酰酶:受CTP反馈抑制 CTP合成酶: 受CTP反馈抑制 药物对嘧啶核苷酸合成的影响

有多种嘧啶类似物可抑制嘧啶核苷酸的合成。 5-氟尿嘧啶抑制胸腺嘧啶脱氧核苷酸的合成。

5-氟尿嘧啶在人体内转变成相应的核苷酸,再转变成脱氧核苷酸,可抑制脱氧胸腺嘧啶核酸合成酶,干扰尿嘧啶脱氧核苷酸经甲基化生成脱氧胸苷的过程,DNA合成受阻。

补救途径

(1) 嘧啶核苷激酶途径(重要途径)

嘧啶碱与1-磷酸核糖生成嘧啶核苷,然后由尿苷激酶催化尿苷和胞苷形成UMP和CMP。 核苷磷酸化酶 嘧啶碱+ 1- 磷酸核糖 嘧啶核苷 + Pi 尿苷激酶/Mg2+ 尿苷(胞 苷 )+ ATP UMP(CMP)+ ADP

(2) 磷酸核糖转移酶途径(胞嘧啶不行) 尿嘧啶 + 5-PRPP 尿嘧啶磷酸核糖转移酶 UMP + PPi

脱氧核苷酸的合成

脱氧核糖核苷酸是由相应的核糖核苷酸衍生而来的。 (1)腺嘌呤、鸟嘌呤和胞嘧啶核糖核苷酸经还原,将核糖第二位碳原子的氧脱去,即成为相应的脱氧核糖核苷酸。

(2)胸腺嘧啶脱氧核糖核苷酸:先由尿嘧啶核糖核苷酸还原形成尿嘧啶脱氧核糖核苷酸,然后尿嘧啶再经甲基化转变成胸腺嘧啶。

核糖核苷酸的还原 ADP、GDP、CDP、UDP均可分别被还原成相应的脱氧核糖核

苷酸:dADP、dGDP、dCDP、dUDP等,其中dUDP甲基化,生 Ser羟甲基转移酶 成dTDP。 Ser + THFGly + N5 A ,N10-亚甲基THFA + H2O 还原反应一般在核苷二磷酸(NDP)水平上进行,ATP、dATP、 dTTP、dGTP是还原酶的变构效应物,个别微生物(赖氏乳菌杆菌)

在核苷三磷酸水平上还原(NTP)。 二氢叶酸还原酶 原酶系 7,8-二氢叶酸 + NADPH + H+ 5,6,7,8-THFA + NDAP+核苷酸还 由硫氧还蛋白、硫氧还蛋白还原酶和核苷酸还原酶(B1、B2) 三部分组成。 四氢叶酸是一碳的载体,参与嘌呤核苷酸和胸腺嘧啶脱氧核苷

B1、B2亚基结合后,才具有催化活性。 酸的合成。 B1上的巯基和B2上的酪氨酸残基是活性中心的催化基因。 氨基嘌呤、氨甲蝶呤是叶酸的类似物,能与二氢叶酸还原酶不另外核苷酸还原酶所需的还原当量还可来自谷胱甘肽。 可逆结合,阻止FH4的生成,从而抑制FH4参与的一碳单位的转移。①硫氧还蛋白 -SH 可用于抗肿瘤。 ②硫氧还蛋白还原酶、辅酶FAD 核苷酸合成总结 ③谷胱甘肽氧还蛋白(酶) 辅酶核苷酸的生物合成 ④谷胱甘肽还原酶 -SH NAD、NADP、 FMN、 FAD、 CoA ⑤核苷酸还原酶(RR)-SH 烟酰胺核苷酸的合成(NAD 、NADP) 核苷酸还原酶结构模型及催化机理 NAD、NADP是脱氢辅酶,在生物氧化还原系统中传递氢。 结构模型 合成途径: B1亚基上有两个调节部位,一个影响整个酶的活性(一级调节(1)烟酸单核苷酸焦磷酸化酶 部位),另一个调节对底物的专一性(底物结合部位) (2)脱酰胺-NAD 焦磷酸化酶

一级调节部位:ATP是生物合成的信号分子,而dATP是核苷(3)NAD合成酶 酸被还原的信号。 NADP的合成:NAD激酶催化NAD与ATP反应,使NAD的

底物调节部位:.①与ATP结合,可促进嘧啶类的UDP、CDP腺苷酸残基的核糖2’-OH磷酸化,生成NADP。 还原成dUDP、dCDP;②与dTTP或dGTP结合,可促使GDP(ADP)黄素核苷酸的合成(FMN、FAD) 还原成dGDP(dADP) 辅酶A的合成

催化机理 自由基催化转换模型。 前体:腺苷酸、泛酸、巯基乙胺、磷酸 脱氧核苷酸的补救(脱氧核苷激酶途径) 途径: (1)泛酸激酶 脱氧核苷酸也能利用已有的碱基或核苷进行合成(补救途径), (2)磷酸泛酰半胱氨酸合成酶 但只有脱氧核苷激酶途径,不存在类似的磷酸核糖转移酶途径 (3)磷酸泛酰半胱氨酸脱羧酶

(4)脱磷碱基 + 核苷磷酸化酶 酸辅酶A焦磷酸化酶

(5)脱磷酸辅 脱氧核糖-1-磷酸 脱氧核苷 + 磷酸 酶A激酶

脱氧核苷激酶脱氧核 苷 + ATP 脱氧核苷酸 + ADP 胸腺嘧啶脱氧核苷酸的合成

由尿嘧啶脱氧核苷酸(dUMP)经甲基化生成。 Ser提供甲基,NADPH提供还原当量。

胸腺嘧啶核苷酸合成酶

dUMP + N5,N10-亚甲基THFA dTMP + 二氢叶酸 3


核酸的降解和核苷酸代谢.doc 将本文的Word文档下载到电脑
搜索更多关于: 核酸的降解和核苷酸代谢 的文档
相关推荐
相关阅读
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 10

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219