2019人教A版数学必修五 (2.3.1 《等差数列的前n项和》(一))
示范教案
“等差数列的前n项和”第一节课主要通过高斯算法来引起学生对数列求和的兴趣,进而引导学生对等差数列的前n项和公式作出探究,逐步引出求和公式以及公式的变形,初步形成对等差数列的前n项和公式的认识,让学生通过探究了解一些解决数学问题的一般思路和方法,体会从特殊到一般,再从一般到特殊的思维规律,所以,在教学中宜采用以问题驱动、层层铺垫,从特殊到一般启发学生获得公式的推导方法.为了让学生较熟练地掌握公式,要采用设计变式题的教学手段
通过本节的例题的教学,使学生感受到在实际问题中建立数学模型的必要性,以及如何去建立数学模型的方式方法,培养学生善于从实际情境中去发现数列模型,促进学生对本节内容的认知结构的形成
教学重点 等差数列的前n项和公式的理解、推导及应用
教学难点 灵活应用等差数列前n项和公式解决一些简单的有关问题 教具准备 多媒体课件、投影仪、投影胶片等
三维目标
一、知识与技能
掌握等差数列前n项和公式及其获取思路;会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题 二、过程与方法
通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题、解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平 三、情感态度与价值观
通过公式的推导过程,展现数学中的对称美,通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感
教学过程
导入新课
教师出示投影胶片1:
印度泰姬陵aj Maha是世界七大建筑奇迹之一,所在地阿格拉市,泰姬陵是印度古代建筑史上的经典之作,这个古陵墓融合了古印度、阿拉伯和古波斯的建筑风格,是印度伊斯兰教文化的象征
陵寝以宝石镶饰,图案之细致令人叫绝.传说当时陵寝中有一个等边三角形图案,以相同大小的圆宝石镶饰而成,共有100层(如下图),奢华之程度,可见一斑.你知道这个图案中一共有多少颗宝石吗?(这问题赋予了课堂人文历史的气息,缩短了数学与现实之间的距离,引领学生步入探讨高斯算法的阶段)
生 只要计算出1+2+3+…+100的结果就是这些宝石的总数
师 对,问题转化为求这100个数的和.怎样求这100个数的和呢?这里还有一段故事教师出示投影胶片2:
高斯是伟大的数学家、天文学家,高斯十岁时,有一次老师出了一道题目,老师说:“现在给大家出道题目:
过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说:
教师问:“你是如何算出答案的?
高斯回答说:因为1+100=101;2+99=101;…;50+51=101,所以101×50=5 050. 师 这个故事告诉我们什么信息?高斯是采用了什么方法来巧妙地计算出来的呢? 生 高斯用的是首尾配对相加的方法.也就是:1+100=2+99=3+98=…=50+51=101,有50个101,所以 师 对,高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5 050了
高斯算法将加法问题转化为乘法运算,迅速准确得到了结果 作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西
师 问:数列1,2,3,…,100是什么数列?而求这一百个数的和1+2+3+…+100相当于什么?
生 这个数列是等差数列,1+2+3+…+100这个式子实质上是求这数列的前100项的和. 师 对,这节课我们就来研究等差数列的前n项的和的问题 推进新课
[合作探究]
师 我们再回到前面的印度泰姬陵的陵寝中的等边三角形图案中,在图中我们取下第1层到第21层,得到右图,则图中第1层到第21层一共有多少颗宝石呢
生 这是求“1+2+3+…+21”奇数个项的和的问题,高斯的方法不能用了.要是偶数项的数求和就好首尾配成对了
师 高斯的这种“首尾配对”的算法还得分奇、偶个项的情况求和,适用于偶数个项,我们是否有简单的方法来解决这个问题呢
生 有!我用几何的方法,将这个全等三角形倒置,与原图补成平行四边形.平行四边形中的每行宝石的个数均为22个,共21行.则三角形中的宝石个数就是
(1?21)?212
师 妙得很!这种方法不需分奇、偶个项的情况就可以求和,真是太好了!我将他的几何法写成式子就是: 1+2+3+…+21, 21+20+19+…+1,
对齐相加(其中下第二行的式子与第一行的式子恰好是倒序 这实质上就是我们数学中一种求和的重要方法——“倒序相加法 现在我将求和问题一般化:
(1)求1到n的正整数之和,即求1+2+3+…+(n-1)+n.(注:这问题在前面思路的引导下可由学生轻松解决
(2)如何求等差数列{an}的前n项的和Sn
生1 对于问题(2),我这样来求:因为Sn=a1+a2+a3+…+an, Sn=an+an-1+…+a2+a1,
再将两式相加,因为有等差数列的通项的性质:若m+n=p+q,则am+an=ap+aq, 所以Sn?n(a1?an)2
生2 对于问题(2),我是这样来求的:
因为Sn=a1+(a1+d)+(a1+2d)+(a1+3d)+…+[a1+(n-1)×d], 所以Sn=na1+[1+2+3+…+(n-1)]d=na1+即Sn=na1+
n(n?1)d2
n(n?1) d2
[教师精讲]
两位同学的推导过程都很精彩,一位同学是用“倒序相加法”,后一位同学用的是基本量来转化为用我们前面求得的结论,并且我们得到了等差数列前n项求和的两种不同的公式.这两种求和公式都很重要,都称为等差数列的前n项和公式.其中公式(Ⅰ)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n,有利于我们的记忆 [方法引导]
师 如果已知等差数列的首项a1,项数为n,第n项为an,则求这数列的前n项和用公式(Ⅰ)来进行,若已知首项a1,项数为n,公差d,则求这数列的前n项和用公式(Ⅱ)来进行 引导学生总结:这些公式中出现了几个量? 生 每个公式中都是5个量
师 如果我们用方程思想去看这两个求和公式,你会有何种想法
生 已知其中的三个变量,可利用构造方程或方程组求另外两个变量(知三求二
师 当公差d≠0时,等差数列{an}的前n项和Sn可表示为n的不含常数项的二次函数,且这
二次函数的二次项系数的2倍就是公差 [知识应用]
【例1】 (直接代公式)计算: (1)1+2+3+…+n;
(2)1+3+5+…+(2n-1); (3)2+4+6+…+2n;
(4)1-2+3-4+5-6+…+(2n-1)-2n (让学生迅速熟悉公式,即用基本量观点认识公式)请同学们先完成(1)~(3),并请一位同学回答 生
(1)1+2+3+…+n=
n(n?1)2;
(2)1+3+5+…+(2n-1)=
n(1?n?1)2 =n2
;
(3)2+4+6+…+2n=
n(2n?2) =n(n2师 第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?(小组讨论后,让学生发言解答
生 (4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,
2
所以原式= [1+3+5+…+(2n-1)]-(2+4+6+…+2n)=n-n(n+1)=-n
生 上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:原式=(-1)+(-1)+(-1)+…+(-1)=-n
师 很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法.注意在运用求和公式时,要看清等差数列的项数,否则会引起错解 【例2】 (课本第49页例
分析:这是一道实际应用题目,同学们先认真阅读此题,理解题意.你能发现其中的一些有用信息吗
生 由题意我发现了等差数列的模型,这个等差数列的首项是500,记为a1,公差为50,记为d,而从2001年到2010年应为十年,所以这个等差数列的项数为10.再用公式就可以算出来了
师 这位同学说得很对,下面我们来完成此题的解答.(按课本解答示范格式 【例3】 (课本第50页例2)已知一个等差数列的前10项的和是310,前20项的和是1 220,由此可以确定求其前n项和的公式吗?
分析:若要确定其前n项求和公式,则必须确定什么? 生 必须要确定首项a1与公差d
师 首项与公差现在都未知,那么应如何来确定?
生 由已知条件,我们已知了这个等差数列中的S10与S20,于是可从中获得两个关于a1和d的关系式,组成方程组便可从中求得 (解答见课本第50页
师 通过上面例题3我们发现了在以上两个公式中,有5个变量.已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二).运用方程思想来解决问题 [合作探究]
师 请同学们阅读课本第50页的例3,阅读后我们来互相进行交流 (给出一定的时间让学生对本题加以理解 师 本题是给出了一个数列的前n项和的式子,来判断它是否是等差数列.解题的出发点是什么
生 从所给的和的公式出发去求出通项

