SPSS实验八 时间序列分析 实验教案
实验八 spss11中的时间序列分析 一、实验目的
了解spss11中时间序列分析的简单方法
二、实验原理介绍
1.SPSS中时间序列分析简要介绍
依时间顺序排列起来的一系列观测值称为时间序列,跟大部分的统计不同,这类资料的先后顺序是不能忽视的,更关键的是观测值之间不独立。因此,这类数据不能用普通的统计方法解决。时间序列分析(Time series)是专门用于分析这种时间序列资料的统计模型。它考虑的不是变量之间的因果关系,而是重点考察变量在时间方面的发展变化规律,并为之建立数学模型。
时间序列分析的方法可以分为两大类:Time domain和Frequency domain。前者将时间序列看成是过去一些点的函数,或者认为序列具有时间系统变化的趋势,它可以用不多的参数来加以描述,或者说可以通过差分、周期等还原成随机序列。后者则认为时间序列是由数个正弦波成分叠加而成,当序列的确来自一些周期函数集合时,该方法特别有用。不同的专业领域习惯用不同的方法:经济学习惯用Time domain,而电力工程专家则对Frequency domain更感兴趣。下面讲述的都是Time domain
由于时间序列模型的复杂性,它在spss中横跨了数据整理、统计分析和绘图三大部分,具体来说是:
? 预处理模块:包括用于填充序列缺失值的Transform | replace Missing Values过程,
建立时间变量的Data | Define dates过程和将序列平稳化的Transform | Create Time Series过程。
? 图形化观察/分析:时间序列在分析中高度依赖图形。Spss为其提供了特有的观察
工具:序列图(Sequence Chart)、自相关/偏自相关图(Autocorrelation Function,ACF & Autocorrelation Function,PACF)、交叉相关图(Crosscorrelation Function,CCF)、周期图(Periodogram)和谱密度图(Spectral Chart)。后三者被统一放置在Graphs | Time Series菜单中。
? 分析模块:它们被统一放置在Analysis | Time Series菜单中,共包括指数平滑法
(Exponential Smoothing过程)、自回归线性模型(Autoregressive model)、ARIMA模型和季节解构(Seasonal Decomposition)四种方法。
2.时间序列的建立和平稳化
在对数据拟合时间序列模型前需要进行一系列的准备工作,首先,如果数据存在缺失值的话就要进行填补;第二,SPSS是不会自动将数据文件识别为时间序列的,必须要加以定义;第三,原始的时间序列往往要经过初步的计算(平稳化)才能更好的用于进一步分析。
1
SPSS实验八 时间序列分析 实验教案
2.1缺失值的填补-Replace Missing Values过程
大多数时间序列模型都要求数据序列完整无缺,但这实际上非常难以做到。当序列中存在缺失值时,显然不可能采用剔除的方法,因为这样会使得缺失值之后数据的周期发生错位。在这种情况下就应当使用Replay Missing Values过程对缺失值采用适当的方法进行填充,并将结果存入一个新变量。
例子:打开数据文件gnp.sav,删除变量gnp在第8、14条记录中的数值,然后选择适当的缺失值填充方法对其进行填充。
缺失值填充方法有好几种,但各有使用范围,现在gnp序列的规律并不清楚,为保险起见,我们只利用缺失值附近的数据进行填充。
方法:Transform | Replace Missing Values
图1
图1中解释如下:
New Variable框:缺失值填充前后的变量对应列表 Name框:存储填补序列的新变量名称
Method下拉列表:可供选择的序列填充方法 ? Series mean:全体序列的均数,默认值
? Mean of nearby points:相邻若干点的均数,在下方的Span of nearby points单选框
组中设置使用的相邻点数。 ? Median of nearby points:相邻若干点的中位数,在下方的Span of nearby points单选
框中设置使用的相邻点数
? Linear interpolation:线性内插,即缺失值相邻两点的均数,但如果缺失值是在序列
的最前/最后,则无法被填充。
? Linear trend at point:该点的线性趋势,将记录号作为自变量,序列值作为因变量
进行回归,求得该点的估计值。
Span of nearby points单选框组:设置相应填充方法中需要使用的相邻记录数。 Change:将所做得设定应用于相应变量
2
SPSS实验八 时间序列分析 实验教案
2.2时间变量的定义-Define dates过程
时间序列数据的一个明显的特点就是记录依时间排列。在SPSS中需要定义时间变量。只有在定义后,SPSS才承认该序列的诸如周期等时间特征。
例:美国1947年第一季度到1970年第四季度的GNP在gnp.sav文件中,其中只有一个变量gnp记录着各季度的GNP值,请根据提供的时间范围为其定义时间变量。
方法:对于这种时间序列数据,在数据输入时仅仅需要输入每个时间点上的具体数值,而时间变量应当用专门的过程来定义。在数据输入时即使直接输入时间变量,包括Season、Year,SPSS也不会自动认为它们是时间变量,从而无法进行时间序列分析。
采用Data | Define dates 过程来完成。
图2
下面对图2简单讲解如下:
Cases Are框:提供了各种时间的组合供用户选择。序列的周期由时间组合的最小时间单位决定,如Years,quarters的周期是4
First Case Is框组:要求输入第一个数据(该数据可以是缺失值)的时间,根据Cases Are框中的选择不同,相应的内容也会有所变动。右侧会显示相应等级的周期数
Current Dates栏:在界面左下角,定义好周期后,如果再次进入该对话框,则会显示当前数据的时间信息。
上述操作后,数据文件中将加入两个新产生的时间变量year_、quarter_,分别代表年、季度,另有一个变量date_,表示大致的日期(由于信息不全,只能是大致的日期,并且是字符串变量)
2.3时间序列的平稳化-Create Time Series过程
在时间变量定义完成后,时间序列就基本建成了。但是,并非随便建立一个序列就算万事大吉,时间序列分析都是建立在序列平稳的条件上的。一个平稳的随机序列过程有以下要求:均数不随时间变化;方差不随时间变化;自相关系数只与时间间隔有关,而与所处的时间无关。
实际上大多数的时间序列都是不平稳的。在做时间序列分析时,首先就是识别序列的平稳性,并且把不平稳的序列转化为平稳序列。
3
SPSS实验八 时间序列分析 实验教案
Create Time Series过程是SPSS用来对原始序列进行初步处理,以使序列达到平稳化的模块。它可以从原序列变量中通过差分、移动平均等变换同时计算一个或多个新序列,以帮助用户识别原序列的波动规律。
若时间序列的正态性或平稳性不够好,在需要进行数据变换。常用有差分变换(利用transform | Create Time Series)和对数变换(利用Transform | Compute)进行。
对时间序列进行平稳性检验的图检验方法有时序图检验和自相关图检验。
? 时序图检验:根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该
显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界,无明显趋势及周期特征。
? 自相关图检验:平稳序列通常具有短期相关性。该性质用自相关系数来描述,就是
随着延迟期数的增加,平稳序列的自相关系数会很快的衰减向零。(注:时间序列的自相关是指序列前后期数值之间的相关关系,对这种相关系数程度的测定是自相关系数)。如果在ACF图中,随着lag的增大,自相关系数不是迅速减少,则要考虑时间序列是否不平稳,是否有继续差分的必要。
例:前面已经为数据gnp.sav建立了时间变量,现在对该序列进行平稳化。 方法:时间序列分析的第一步一般先做一个观测值和时间的时序图。这对序列的整体印象和后面的分析都非常有帮助。
点击菜单Graph | Sequence,仅仅把gnp变量选择进入variable框中,把Year变量选择入横坐标的标签,别的设置保持默认,绘制时序图如下
300200100GNP019471948194919501952195419531957195519591958196219601964196319651967196819691970YEAR, not periodic 从此时序图中可以看到很明显的线性趋势(序列图是稳步上升的)和周期性(每年的图形有相似性,每年的第四季度总是最高)。这是跟序列平稳的要求相悖的。所以,首先要把不平稳的序列转变为平稳的序列。1.方差平稳化:当序列的方差随着时间变化时,模型参数的点估计估计和预测也许不会出错,但是统计推断会有较大的影响。对数转换和平方根转换是使方差稳定的两种常用的方法,可以通过菜单项Transform | Compute进行。2.去除趋势:差分是去除趋势的有效办法,可以通过菜单项Transform | Create Time Series进行。
4

