4.(2016·九江一模)已知各项不为零的数列{an}的前n项和为Sn,且满足Sn=a1(an-1). (1)求数列{an}的通项公式;
(2)设数列{bn}满足anbn=log2an,求数列{bn}的前n项和Tn.
9.通项遗漏——导致错位相减求和错误
【典例】 已知数列{an}的前n项和为Sn,且Sn=2n2+n-3,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*.
(1)求an,bn;
(2)求数列{an·bn}的前n项和Tn.
[易误点评] (1)求an,忽视n=1的情形,错求an,导致后续问题不能正确求解. (2)错位相减求和时,弄错等比数列的项数,盲目认为除首、末项外成等比数列.
[防范措施] (1)由Sn求an,当n=1时,a1=S1检验是否满足an=Sn-Sn-1(n≥2),若不满足,应分段表示an,从而求Tn时,应分类讨论.(2)由于{anbn}的通项分段表示,求Tn时,不仅要注意对n进行讨论,而且在写出“Tn”与“qTn”的表达式时应特别注意将两式“错项对齐”.即公比q的同次幂项相减,转化为等比数列求和.
25?an?
[跟踪练习] 已知等差数列{an}的前n项和Sn满足S3=6,S5=,则数列?2n?的前n项和为( )
2??n+2
A.1-n+1
2n+4
C.2-n
2
n+4
B.2-n+1
2n+2
D.2-n+1
2
A组 考点能力演练
1.已知Sn为数列{an}的前n项和,且满足a1=1,a2=3,an+2=3an,则S2014=( ) A.2×31007-2 32014-1C. 2
B.2×31007 32014+1D. 2
2.(2016·长沙质检)已知数列{an}的前n项和为Sn,a1=1,当n≥2时,an+2Sn-1=n,则S2015的值为( ) A.2015 C.1008
B.2013 D.1007
nπnπ
1+cos2?an+sin2,则该数列的前18项的和为( ) 3.已知数列{an}满足a1=1,a2=2,an+2=?2??2A.2101 C.1012
B.2012 D.1067
?1?
4.(2016·贵阳一模)已知等差数列{an}的前n项和为Sn,a4=4,S4=10,则数列?aa?的前2015项和为
?nn+1?
( )
2014A. 20152016C. 2015
2015B. 20162017D. 2016
nm
5.已知等差数列{an}的前n项和为Sn,且Sn=,Sm=(m,n∈N*且m≠n),则下列各值中可以为Sn+m
mn的值的是( )
A.2 C.4
B.3 9
D. 2
??1-3n,n为偶数,
6.已知数列{an}的通项公式为an=?n-1则其前10项和为________.
?2,n为奇数,?
7.数列{an}满足a1+a2+?+an=n2(n∈N*),设bn=
1
,T是数列{bn}的前n项和,则Tn=________. anan+1n
8.在数列{an}中,a1=1,an+2+(-1)nan=1,记Sn是数列{an}的前n项和,则S60=________.
2
9.(2016·南昌模拟)设数列{an}的前n项和为Sn,4Sn=an+2an-3,且a1,a2,a3,a4,a5成等比数列,当
n≥5时,an>0.
(1)求证:当n≥5时,{an}成等差数列; (2)求{an}的前n项和Sn.
10.(2016·石家庄一模)设数列{an}的前n项和为Sn,a1=1,an+1=λSn+1(n∈N*,λ≠-1),且a1,2a2,a3
+3为等差数列{bn}的前三项.
(1)求数列{an},{bn}的通项公式; (2)求数列{anbn}的前n项和.
B组 高考题型专练
1.(2015·高考天津卷)已知{an}是各项均为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.
(1)求{an}和{bn}的通项公式;
(2)设cn=anbn,n∈N*,求数列{cn}的前n项和.
2.(2015·高考全国卷Ⅰ)Sn为数列{an}的前n项和,已知an>0,a2n+2an=4Sn+3. (1)求{an}的通项公式;
1(2)设bn=,求数列{bn}的前n项和.
anan+1
3.(2014·高考浙江卷)已知数列{an}和{bn}满足a1a2a3?an=(2)bn(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.
(1)求an与bn;
11
(2)设cn=-(n∈N*).记数列{cn}的前n项和为Sn.
anbn①求Sn;
②求正整数k,使得对任意n∈N*,均有Sk≥Sn.

