巴斯夫重庆MDI一体化项目基本情况
重庆MDI一体化项目是以重庆化医控股(集团)公司与德国巴斯夫为投资主体,在重庆(长寿)化工园区建设以MDI为核心,实行上、中、下游产品链全面配套十七套大型化工设备。总投资达40亿美元。
主要装置规模及投资表 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
给排水 序号 1 2 3 4 5 6 7 8 9 10 11 装置名称 MDI装置 硝基苯装置 苯胺装置 乙炔装置 BDO装置 聚氯乙烯装置(PVC) 氯丁橡胶 异植物醇 醋酸 合成氨 硝酸 5×13000 m3/h循环水站 6300 m3/h循环水站,全厂污水处理站 16000 m3/h循环水站 处理能力1000 m3/h的污水处理站 全厂污水处理站 处理能力120 m3/d的废水处理站 处理能力300 m3/d的污水处理站 (为一体化项目配套:60000 m3/h循环水站,650 m3/h除盐水站,4860 m3消防水池,消防废水收集池:北区4860 m3,16000 m3/h循环水站,50 m3/h除盐水系统 给排水规模 装置名称 MDI装置 硝基苯装置 苯胺装置 乙炔装置 BDO装置 聚氯乙烯装置(PVC) 氯丁橡胶 异植物醇 醋酸 合成氨 硝酸 甲醇 甲醛 氯碱 空分装置 合成气分离 热岛中心 装置规模 (万吨/年) 40 40 30 25 14 32 4 2.2 65 20 40 80 40 30 13.5万Nm3/a 10万Nm3/a 3x470t/h燃煤锅炉 300MW发电机组 529133 250000 138241 103679 160000 239619 149595 177107 137971 111569 149641 224783 化医独资 化医独资或合资 化医独资或合资 化医独资 化医独资或合资 化医独资或合资 化医独资 化医独资 化医独资 化医独资 化医独资 化医参股或控股 化医参股或控股 化医参股或控股 800000 BASF独资 总投资 (万元) 投资主体 备注 长化 建峰 长风 长化 建峰 建峰 建峰 长风 天原 长化 长化 南区3240 m3) 12 13 14 15 16 17 甲醇 甲醛 氯碱 空分装置 合成气分离 热岛中心 循环水站 循环水站 循环水站、化学水处理系统、生活污水处理装置 热岛中心:3×470t/h循环硫化床锅炉、1×50MW高温高压背压式汽轮发电机组、2×125MW抽汽凝汽式汽轮发电机组
相关化工知识
MDI
即二苯基甲烷二异氰酸酯,是生产聚氨酯的基本原料,聚氨酯被广泛运用于冷热保温绝缘材料,包括建筑物、汽车、冰箱、冷冻箱和供暖制冷系统或者管道保温。
制备或来源:以苯胺为原料,与甲醛反应,在酸性溶液中缩合,用碱中和,然后蒸馏,可制得二氨基二苯甲烷,然后与碳酰氯反应可制得,再精馏精制。
现有技术:目前全球流行的MDI生产方法基本是以苯胺为原料,经光气法以后再还原形成粗品的MDI产品,再经分馏装置,分离出纯MDI和聚合MDI。
最新技术:由于光气其巨大的危害性,所以许多工厂都在积极研制新的合成工艺以取代光气法生产,如碳酸二甲酯法,但是目前这些方法还只是在小试车间内有成功的案例,根本无法应用于大规模的生产。
MDI和TDI(甲苯二异氰酸酯,由甲苯硝化生成二硝基甲苯,再经还原得到甲苯二胺。甲苯二胺与光气反应即得TDI)互为替代品,都是生产聚氨酯的原料。目前MDI的价格略贵一些, 但毒性比TDI低,同时MDI形成的聚氨酯产品的模塑性相对较好。
主要供应商:欧美企业:巴斯夫、拜耳、亨斯迈、陶氏 ;日韩企业:日本聚氨酯、三井、锦湖三井;国内企业:烟台万华。
硝基苯
有机化合物,又名密斑油、苦杏仁油,遇明火、高热会燃烧、爆炸。与硝酸反应剧烈。 硝基苯是通过使用浓硝酸和浓硫酸的混合物对苯进行硝化反应而制备的。 作有机合成中间体及用作生产苯胺的原料。
苯胺
苯胺是重要的化工原料,主要用于医药和橡胶硫化促进剂,也是制造树脂和涂料的原料。 工业上主要采用两种方法生产:
①由硝基苯经活性铜催化氢化制备,此法可进行连续生产,无污染。 ②氯苯和氨在高温和氧化铜催化剂存在下反应得到。 苯胺制备技术进展概述 苯胺生产工艺路线
目前苯胺生产工艺路线主要有硝基苯铁粉还原法、苯酚氨化法和硝基苯催化加氢法,分别占苯胺总生产能力的5%、10%和85%,开发的新工艺路线中以苯直接胺化法较有前途,但与实现工业化还有一定距离。
1.硝基苯铁粉还原法 该法是最早的苯胺工业生产方法,其污染环境,设备腐蚀严重,操作维护费用高,难以连续化生产,现已基本淘汰,目前只有拜尔在西维吉尼亚洲的新马丁斯维勒的装置采用此工艺。
2.苯酚胺化法 苯酚胺化的理论产率为99%,优点是原料易得、生产方法简单、催化剂廉价、产品质量好、“三废”少,适于大规模连续生产,并可根据需要联产二苯胺,但比硝基苯催化加氢工艺成本高,目前只有美国阿里斯特克化学公司和日本三井石油化学公司采用此工艺。
3.硝基苯催化加氢法 该法以硝基苯为原料,氢气为还原剂,铜/硅、镍或铂/钯为催化剂,以氢为还原剂,将硝基苯还原生成苯胺,理论产率为99%,我国全部采用该法生产。该法的硝化环节很关键,设备投资占总固定投资的50% 以上。硝基苯催化加氢生产主要采用混酸硝化法,可采用等温或绝热硝化工艺,等温硝化能耗大,反应时间长,副产物多,收率低,产品质量差;绝热硝化工艺突破了反应必须在低温下恒温操作的传统观念,物料停留时间短,副反应少,是当前最有前途的一种硝化技术。国外采用绝热硝化工艺的公司较多,而国内的主流技术为等温硝化工艺。胺化过程包括固定床气相加氢、流化床气相加氢以及硝基苯液相催化加氢工艺。除德国巴斯夫公司采用流化床外,其他公司多采用固定床反应器。我国除山东烟台万华聚氨酯集团有限公司采用固定床反应器外,其他公司均采用流化床反应器。
硝基苯催化加氢技术进展
硝基苯催化加氢技术不断改进:气相催化加氢改为液相催化加氢;开发活性高、负荷大、稳定性好、机械强度高、寿命长而价廉的催化剂;苯绝热硝化代替苯等温硝化等。
莫贝公司研制出由金、银、铂或钯等贵金属制成的网状、波纹状或蜂窝状催化剂,以甲醇为溶剂,于131~150℃、6.4MPa压力下硝基苯加氢反应63min,苯胺收率98.1%以上。
英国石油合成研究所披露了合金膜催化剂的制备方法:将含80%~95%钯和5%~20%铑或钌的金属膜,用电化学方法在其一侧或两侧电镀上一层锌,锌与金属膜厚度之比为1∶10~100,于250℃加热2h后,用沸腾的20%盐酸处理,除去锌,得到多孔表面的金属催化剂薄膜,用于加氢反应。
英国Reading大学和皇家学院与Johnson Matthey合作开发了一种带磁性贵金属催化剂的新体系,将该催化剂用于硝基苯转化制苯胺的研究,其反应时间较对比催化剂缩短了1/2。采用涂石墨的磁铁心,外部为纳米级贵金属涂层,磁性使贵金属易于回收,纳米粒子可增加相对的表面积,提高催化活性。
天津大学、兰州大学和青岛化工学院分别研制成功了功能性磷树脂,活性镍或镍-镧系元素为催化剂,用电弧等离子法制得纳米镍用于催化硝基苯加氢反应,改进了硝基苯催化加氢技术。
2004年清华大学公开了硝基苯气相加氢制备苯胺装置及方法的专利。主要包括流化床反应器及其底部的反应原料气体入口;设置在该入口上部的第1气体分布器;设置在反应器轴向高度中部的将反应器分为2个催化剂密相区的第2气体分布器;设置在反应器内2个催化剂密相区中的换热器;设置在所述反应器外部或内部的分别与上下2个催化剂密相区相连的催化剂溢流装置以及气固分离装置;以及利用上述装置制备苯胺的方法,主要包括控制氢气与硝基苯的摩尔比,控制反应器2个催化剂密相区的温度等步骤。该项技术具有反应器操作弹性大,硝基苯转化率高、产生苯胺的选择性高、产品纯度高、催化剂用量少、能耗低等优点。
苯直接胺化法进展较快
传统工艺生产苯胺均存在着步骤多、操作条件苛刻、附加试剂及副产物多、对环境危害
大等缺点。而芳香族化合物(苯)与氨反应直接氨基化将多步反应变为一步,可明显提高原子利用率,且副产物对环境无害,是目前研究最多的直接胺化合成芳胺(苯胺)的路线。在150~500℃、1.013~101.3MPa、苯在催化剂作用下可直接胺化合成苯胺,受热力学平衡限制,苯胺的收率较低。
杜邦公司首先提出了这项工艺。20世纪90年代,日本Mitsui Toatsu采用苯、水和氨在惰性气体保护的金属磷酸盐催化剂存在下,在常压或正压、300~500℃下合成苯胺,产率1.9%。如果在这类反应中加入氧化剂以移去产物中的H2,打破原有的平衡,会使苯的转化率提高,苯胺的产率也可能提高。
Durante等1999年提出了苯催化氧化胺化制苯胺的方法。该方法用分子氧作终端氧化剂,催化剂由载体、过渡金属和单核或双核配体(包含至少一个硝基或亚硝基或螯合的双核化合物)组成,反应在100~450℃、3.4~6.2MPa下,苯一步合成苯胺,但苯胺选择性很低。
2000年,英国ICI公司开发了在较高温度和较高压力下气相混合芳烃(如苯)、氨气和氧气一步反应合成芳胺(如苯胺)的工艺,产品选择性达到96%。该催化剂以SiO2、ZrO2、TiO2、Al2O3或CaAlO4为载体材料,最佳比表面积为100~200m2/g的Al2O3;负载的钒组分以V2O5计为5%~15%;催化剂中添加碱金属和/或贵金属,和/或过渡金属作为助催化剂。采用共沉淀法引入各催化活性组分和/或助催化剂。胺化反应在低于200MPa下进行,最佳压力范围为20~50MPa;反应温度低于600℃,最佳温度为350~450℃。ICI公司进行了应用实验,载于Al2O3上的V2O5(8%)首先于450℃,在固定床反应器中脱氢以活化催化剂,然后由苯∶氨∶氧∶氮(摩尔比1∶3∶0.05∶2.45)组成的混合物在催化剂存在下,制得的苯胺选择性为71%。在另一次实验中,采用载于硅石上的V2O5和苯∶氨∶氧(摩尔比1∶100∶0.05)组成的混合物进料气,苯胺选择性可达到96%。
Poojary等提出了在贵金属/可还原金属氧化物催化剂作用下,直接胺化芳烃及杂环类化合物合成芳胺。该催化剂以ZrO2和TiO2为载体,用碱金属或碱土金属氧化物的溶液浸渍载体材料,再在氧化性环境中于550℃或更高温度下焙烧,制得添加了氧化物助催化剂2%~5%的载体。催化剂中负载了一种或多种贵金属和一种或多种可还原金属氧化物,采用浸渍法、共浸渍法引入催化活性组分,其中贵金属组分含量为0.15%~3%,可还原金属氧化物的总含量为5%~20%。在该催化剂作用下,在间歇反应器中混合苯和氨,于300℃、30MPa下反应,苯的转化率为10.4%,选择性达100%。但该催化剂制备方法比较烦琐,所用的载体需用碱金属或碱土金属改性,由于负载了贵金属组分,催化剂制备上没有成本优势,将该催化剂用于由苯直接胺化合成苯胺的反应时,需在高温、高压下进行,操作条件比较苛刻,高温下氨分解导致反应器的寿命明显缩短。
在我国近年对苯与H2O2反应制苯胺的研究比较多。2003年,厦门市先端科技有限公司开发了由苯、氨和氧直接合成苯胺的工艺。此工艺具有苯转化率高、选择性好的特点。苯与质量分数为25%的氨水和氧在1.5MPa和140~160℃条件下合成苯胺,苯胺的总选择性为94%(另有大约5%的苯酚和1%的苯);如果由苯、液态氨和氧在2.0~8.1MPa和 160~200℃条件下合成苯胺,苯胺的总选择性为95%。此工艺所用的催化剂是金属氧化物、金属氯化物、金属氟化物、金属碘化物、金属硫酸盐、金属磷酸盐、金属杂多酸盐、BF3、除铁粉外的金属,以及上列化合物的任意比例混合物,载体是至少有一种选自如SiO2、B2O3、Al2O3、GeO2、TiO2、ZrO2、Nb2O5、Ta2O5、活性炭等的金属化合物或非金属化合物。
四川大学化学学院与四川省绿色化学与技术重点实验室2004年采用H2O2作氧化剂,实现了由苯直接氧化胺化合成苯胺,并公开了制备方法的专利。研究人员开发出

