2016中考数学历年压轴题分类(精华)

2026/1/14 22:24:23

朔州张小飞

例3 2012年苏州市中考第29题

121bx?(b?1)x?(b是实数且b>2)与x轴的正半轴分别交于444点A、B(点A位于点B是左侧),与y轴的正半轴交于点C.

(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);

(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;

(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.

如图1,已知抛物线y?图1

动感体验

请打开几何画板文件名“12苏州29”,拖动点B在x轴的正半轴上运动,可以体验到,点P到两坐标轴的距离相等,存在四边形PCOB的面积等于2b的时刻.双击按钮“第(3)题”,拖动点B,可以体验到,存在∠OQA=∠B的时刻,也存在∠OQ′A=∠B的时刻.

思路点拨

1.第(2)题中,等腰直角三角形PBC暗示了点P到两坐标轴的距离相等.

2.联结OP,把四边形PCOB重新分割为两个等高的三角形,底边可以用含b的式子表示. 3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q最大的可能在经过点A与x轴垂直的直线上.

满分解答

b). 4(2)如图2,过点P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,那么△PDB≌△PEC. 因此PD=PE.设点P的坐标为(x, x). 如图3,联结OP.

1b15所以S四边形PCOB=S△PCO+S△PBO=??x??b?x?bx=2b.

2428161616解得x?.所以点P的坐标为(,).

555(1)B的坐标为(b, 0),点C的坐标为(0,

图2 图3

朔州张小飞

121b1x?(b?1)x??(x?1)(x?b),得A(1, 0),OA=1. 4444①如图4,以OA、OC为邻边构造矩形OAQC,那么△OQC≌△QOA. BAQA当,即QA2?BA?OA时,△BQA∽△QOA. ?QAOAb所以()2?b?1.解得b?8?43.所以符合题意的点Q为(1,2?3).

4②如图5,以OC为直径的圆与直线x=1交于点Q,那么∠OQC=90°。 因此△OCQ∽△QOA. BAQA当时,△BQA∽△QOA.此时∠OQB=90°. ?QAOABOQA所以C、Q、B三点共线.因此,即b?QA.解得QA?4.此时Q(1,4). ?COOAb14(3)由y?图4 图5

考点伸展

第(3)题的思路是,A、C、O三点是确定的,B是x轴正半轴上待定的点,而∠QOA与∠QOC是互余的,那么我们自然想到三个三角形都是直角三角形的情况.

这样,先根据△QOA与△QOC相似把点Q的位置确定下来,再根据两直角边对应成比例确定点B的位置.

如图中,圆与直线x=1的另一个交点会不会是符合题意的点Q呢?

如果符合题意的话,那么点B的位置距离点A很近,这与OB=4OC矛盾.

朔州张小飞

例4 2012年黄冈市中考模拟第25题

如图1,已知抛物线的方程C1:y??1(x?2)(x?m) (m>0)与x轴交于点B、C,与y轴m交于点E,且点B在点C的左侧.

(1)若抛物线C1过点M(2, 2),求实数m的值; (2)在(1)的条件下,求△BCE的面积;

(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;

(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.

图1

动感体验

请打开几何画板文件名“12黄冈25”,拖动点C在x轴正半轴上运动,观察左图,可以体验到,EC与BF保持平行,但是∠BFC在无限远处也不等于45°.观察右图,可以体验到,∠CBF保持45°,存在∠BFC=∠BCE的时刻.

思路点拨

1.第(3)题是典型的“牛喝水”问题,当H落在线段EC上时,BH+EH最小.

2.第(4)题的解题策略是:先分两种情况画直线BF,作∠CBF=∠EBC=45°,或者作BF//EC.再用含m的式子表示点F的坐标.然后根据夹角相等,两边对应成比例列关于m的方程.

满分解答

11(x?2)(x?m),得2???4(2?m).解得m=4. mm111(2)当m=4时,y??(x?2)(x?4)??x2?x?2.所以C(4, 0),E(0, 2).

44211所以S△BCE=BC?OE??6?2?6.

22(3)如图2,抛物线的对称轴是直线x=1,当H落在线段EC上时,BH+EH最小.

HPEO设对称轴与x轴的交点为P,那么. ?CPCOHP233因此?.解得HP?.所以点H的坐标为(1,).

3422(4)①如图3,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.

CEBC由于∠BCE=∠FBC,所以当,即BC2?CE?BF时,△BCE∽△FBC. ?CBBF1(x?2)(x?m)1FF'EO2m设点F的坐标为(x,?(x?2)(x?m)),由,得??. mBF'COx?2m解得x=m+2.所以F′(m+2, 0).

(1)将M(2, 2)代入y?? 朔州张小飞

COBF'(m?4)m2?4mm?4由,得.所以BF?. ??2CEBFmBFm?4(m?4)m2?4由BC?CE?BF,得(m?2)?m?4?.

m整理,得0=16.此方程无解.

222图2 图3 图4

②如图4,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,

BEBC由于∠EBC=∠CBF,所以,即BC2?BE?BF时,△BCE∽△BFC. ?BCBF1在Rt△BFF′中,由FF′=BF′,得(x?2)(x?m)?x?2.

m解得x=2m.所以F′(2m,0).所以BF′=2m+2,BF?2(2m?2). 由BC2?BE?BF,得(m?2)2?22?2(2m?2).解得m?2?22. 综合①、②,符合题意的m为2?22.

考点伸展

第(4)题也可以这样求BF的长:在求得点F′、F的坐标后,根据两点间的距离公式求BF的长.


2016中考数学历年压轴题分类(精华).doc 将本文的Word文档下载到电脑
搜索更多关于: 2016中考数学历年压轴题分类(精华) 的文档
相关推荐
相关阅读
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 10

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219