C.N(7,45) D.N(11,45)
19.设二维随机变量(X,Y)的分布律为
Y X 1 2 0 16 26 1 26 16 则E(XY)?__2/3_____.
X -1 1 2E(X)=__1_____. 12X20.设随机变量的分布律为 ,则P 33
21.设随机变量X与Y相互独立,且D(X)?0,D(Y)?0,则X与Y的相关系数?XY?_0_____.(此为定理)
29.设连续型随机变量X的分布函数为
x?0,?0,?xF(x)??0?x?8,8?x?8.?1,
D(X)??P?X?E(X)??f(x)E(X),D(X)8??. 求:(1)X的概率密度;(2);(3)
200901
D(X)?1?7.设X~B?10,?,则?( B )
3E(X)??A.
1 3 B.
2 3 C.1 D.
10 3D(X)npq2??q?. E(X)np3?1?e?2x,x?08.已知随机变量X的分布函数为F(x)??,则X的均值和方差分别为
?0,x?0( D )
A.E(X)?2,D(X)?4 C.E(X)?
B.E(X)?4,D(X)?2
1111,D(X)? D.E(X)?,D(X)? 4224111X~E(2),E(X)?,D(X)?2?.
422120.设随机变量X具有分布P{X?k}?,k?1,2,3,4,5,则D(X)?___________.
511E(X)?(1?2?3?4?5)??3,E(X2)?(1?4?9?16?25)??11,
55D(X)?E(X2)?[E(X)]2?11?9?2.
21.若X~N(3,0.16),则D(X?4)?___________.
D(X?4)?D(X)?0.16.
29.已知随机变量X,Y的相关系数为?XY,若U?aX?b,V?cY?d,其中ac?0. 试求U,V的相关系数?UV.
解:cov(U,V)?cov(aX?b,cY?d)?accov(X,Y),
D(U)?D(aX?b)?a2D(X),D(V)?D(cY?d)?c2D(Y),
?UV?cov(U,V)D(U)D(V)?accov(X,Y)acD(X)D(Y)?cov(X,Y)D(X)D(Y)??XY
200904
7.设二维随机变量(X,Y)的分布律为
Y0
1 1/3 0
X
则E(XY)?( B ) A.?1 91 90 1 1/3 1/3 1D.
3 B.0 C.
E(XY)?0?0?111?0?1??1?0??1?1?0?0. 3331??19.设随机变量X~B?18,?,则D(X)?____________.
3??12D(X)?18???4.
33?2x,0?x?120.设随机变量X的概率密度为f(x)??,则E(X)?___________.
0,其他?2x32E(X)??xf(x)dx??2xdx?3??0??11?02. 321.已知E(X)?2,E(Y)?2,E(XY)?4,则X,Y的协方差cov(X,Y)?____________.
cov(X,Y)?E(XY)?E(X)E(Y)?4?2?2?0.
29.设离散型随机变量X的分布律为
X 0 1
P p1 p2
且已知E(X)?0.3,试求:(1)p1,p2;(2)D(?3X?2). 解:X~B(1,p2),所以E(X)?p2,D(X)?p1p2. (1)由E(X)?p2,得p2?0.3,p1?1?p2?1?0.3?0.7;
(2)由D(X)?p1p2?0.7?0.3?0.21,得D(?3X?2)?9D(X)?9?0.21?1.89.
200907
8.已知随机变量X服从参数为2的泊松分布,则随机变量X的方差为( D ) A.?2
B.0
C.
1 2 D.2
D(X)?2.
19.设X~N(0,1),Y?2X?3,则D(Y)?____________.
D(Y)?4D(X)?4.
27.设(X,Y)服从在区域D上的均匀分布,其中D为x轴、y轴及x?y?1所围成,求X与Y的协方差cov(X,Y).(此即P.106例4-29) 解:D的面积等于
?2,(x,y)?D1,所以f(x,y)??. 2?0,(x,y)?D?1?x21?x),0?x?1?2dy,0?x?1?(fX(x)??f(x,y)dy?????0?0,其他????0,其他??
21?y),0?y?1?(,同理fY(y)??,
?0,其他??10E(X)????xfX(x)dx??2x(1?x)dx
1?22x3?112??,同理E(Y)?, ??(2x?2x)dx??x??33???0301???dx??xy2E(XY)???xyf(x,y)dxdy???2xydy???????0?00?????11?x1?x011dx??(x?2x2?x3)dx
0

