disp('A;Bij˻Ϊ'); x
end
disp('A;BĵΪ');
y 9.
úĵݹöһ
nļ
?imȻi?1øúļ
?10050k??k210??1?1k?1k?1k
k ļ function
sum=myfnc(n,
m) if n<=1 sum=1; else
sum= myfnc (n-1, m)+n^m; end
еļ
1005010
?k??k2??11k?1k?1k
k? sum=myfnc(100, 1)+
myfnc(50, 2)+myfnc(10,-1)
10. дг
s=0;
a=[12,13,14;15,16,17;18,19,20;21,22,23]; for k=a for j=1:4
if
rem(k(j),2)~=0
s=s+k(j);
end end
end s
ִнΪ s=108
ļִкĽΪ x =
4
12 20 y=
2 4
6
1. (1) x=-10::10; y=100./(1+x.^2); plot(x,y)
(2) x=-10::10;
y=1/(2*pi)*exp(-x.^2/2); plot(x,y)
(3) ezplot('x^2+y^2=1') (4) t=-10::10; x=t.^2; y=5*t.^3; plot(x,y) 2. (1)
theta=0::2*pi; rho=5*cos(theta)+4; polar(theta,rho) (2)
theta=::2*pi; rho=12./sqrt(theta); polar(theta,rho)
(3) theta=::2*pi; rho=5./cos(theta)-7; polar(theta,rho)
(4)
theta=::2*pi; rho=pi/3.*theta.^2; polar(theta,rho) 3. (1)
t=0:pi/100:2*pi; x=cos(t);
y=sin(t); z=t;
plot3(x,y,z) (2)
u=0:pi/100:2*pi; v=0:pi/100:2*pi; x=(1+cos(u)).*cos(v); y=(1+cos(u)).*sin(v); z=sin(u); plot3(x,y,z) (3) (4) 5.
plot
>> x=linspace(-10,10,200); >> y=[]; >> for x0=x if x0>0
y=[y,x0.^2+(1+x0).^(1/4)+5]; elseif x0==0 y=[y,0]; elseif x0<0
y=[y,x0.^3+sqrt(1-x0)-5]; end end >> plot(x,y)
fplot
fplot('(x<0).*(x.^3+sqrt(1-x)-5)+(x==0).*0+(x>0).*(x.^2+(1+x).^(1/4)+5)',[-10,10])
1.
A=randn(10,5)
1mean(A) ;ֵ std(A) ;
2max(max(A)) ;Ԫ min(min(A)) ;СԪ 3B=sum(A,2) ;AÿԪصĺ sum(B) ;AȫԪ֮
4sort(A) ;AÿԪذ
sort(A,2,descend) ;AÿԪذ 2. 1 2
X=[1 4 9 16 25 36 49 64 81 100]; Y=1:10; X1=1:100;
Y1=interp1(X,Y,X1,'cubic') 3.
x=[165 123 150 123 141]; y=[187 126 172 125 148]; P=polyfit(x,y,3) P = +003 *
Ϊp(x)=+8433 4.
(1)P1=[0 3 2];P2=[5 -1 2];P3=[1 0 ];
P=conv(conv(P1,P2),P3) P =
0 P(x)=15x5++ (2) roots(P) ans = +
- (3) i=0:10; xi=*i; polyval(P,xi) ans =
5. (1)
ļ function f=fxy(u) x=u(1);y=u(2); f=3.*x.^2+2*x.*y+y.^2 [U,fmin]=fminsearch('fxy',[1,1]) U = * fmin = 2
f=inline('-sin(x)-cos(x.^2)'); fmax=fminbnd(f,0,pi) fmax =
6.
1x=[pi/6 pi/4 pi/3]; f=inline('sin(x).^2+cos(x).^2'); dx=diff(f([x,5*pi/12]))/(pi/12) ɲμ157ҳ dx =
0 0 0 x=pi/2ʱ㣺 x=pi/2;
f=inline('sin(x).^2+cos(x).^2'); diff(f([x,pi]))/(pi/2) ans = 0 2 x=1:3;
f=inline('sqrt(x.^2+1)');
dx=diff(f([x,4])) dx =
7.1
f=inline('sin(x).^5.*sin(5*x)'); quad(f,0,pi) ans =
2
f=inline('(1+x.^2)./(1+x.^4)'); quad(f,-1,1) ans =
3
f=inline('x.*sin(x)./(1+cos(x).^2)');
quad(f,0,pi) ans =
4
f=inline('abs(cos(x+y))'); dblquad(f,0,pi,0,pi) ans =
8.
N=64; % T=5; %ʱյ
t=linspace(0,T,N); %Nʱtii=1:N
y=exp(-t); %ֵy
dt=t(2)-t(1); %
f=1/dt; % Ƶ
Y=fft(y); %yĿٸҶ任Y
F=Y(1:N/2+1); %F(k)=Y(k)
f=f*(0:N/2)/N; %ʹƵf0ʼ
plot(f,abs(F)) %-Ƶͼ 9. 1 淨
A=[2 3 5;3 7 4;1 -7 1]; b=[10;3;5]; x=inv(A)*b x =
A=[2 3 5;3 7 4;1 -7 1]; b=[10;3;5]; x=A\\b x =
ֽⷨ
A=[2 3 5;3 7 4;1 -7 1]; b=[10;3;5]; [L,U]=lu(A); x=U\\(L\\b) x =
2ͬ1 10.
ļline_solution(A,b) function
[x,y]=line_solution(A,b) [m,n]=size(A); y=[]; if norm(b)>0
if rank(A)==rank([A,b]) if rank(A)==n
disp('ԭΨһx'); x=A\\b; else
disp('ԭ⣬ؽΪ
xηĻϵΪy'); x=A\\b; y=null(A,'r'); end
disp(''); x=[]; end else
disp('ԭx'); x=zeros(n,1); if rank(A) disp('⣬ϵΪy'); y=null(A,'r'); end end A=[2 1 -1 1;4 2 -2 1;2 1 -1 -1]; b=[1;2;1]; [x,y]=line_solution(A,b) ԭ⣬ؽΪxηĻϵΪy Warning: Rank deficient, rank = 2, tol = . > In line_solution at 11 x = [] y = 0 0 0 0 11. 1 f=inline('x-sin(x)./x'); x=fzero(f, x = (2) f=inline('(sin(x).^2).*exp. *x).*abs(x)'); x=fzero(f, x = 12. ļ function f=fxy(u) x=u(1) y=u(2) f(1)=*sin(x)*cos(y) f(2)=*cos(x)+*sin(y) x=fsolve('fxy',[,],optimset('Display','off')) x = 15. A=[-1 2 0;-1 2 -1;-1 2 -1;-1 2 -1;0 2 -1]; d=[-1;0;1]; B=spdiags(A,d,5,5); b=[1 0 0 0 0]'; x=(inv(B)*b)' x =

