一元一次方程应用题专题讲解 【解题思路】
1、审——读懂题意,找出等量关系。 2、设——巧设未知数。 3、列——根据等量关系列方程。 4、解——解方程,求未知数的值。
5、答——检验,写答案(注意写清单位和答话)。 6、练——勤加练习,熟能生巧。触类旁通,举一反三。
第一讲 行程问题
【基本关系式】
(1) 行程问题中的三个基本量及其关系:
路程=速度×时间 时间=路程÷速度 速度=路程÷时间
(2) 基本类型
① 相遇问题:快行距+慢行距=原距 ② 追及问题:快行距-慢行距=原距
③ 航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
顺速–逆速 = 2水速;顺速 + 逆速 = 2船速
顺水的路程 = 逆水的路程
注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。 常见的还有:相背而行;环形跑道问题。
【经典例题】
例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。 (1)分析:相遇问题,画图表示为:
等量关系是:慢车走的路程+快车走的路程=480公里。
解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480 解这个方程,230x=390
x?116, 2316小时两车相遇 23答:快车开出1 甲 乙 600 甲 乙 (2)分析:相背而行,画图表示为:
等量关系是:两车所走的路程和+480公里=600公里。 解:设x小时后两车相距600公里,
由题意得,(140+90)x+480=600解这个方程,230x=120 ∴ x=
23 12 答:小时后两车相距600公里。 23 (3)分析:等量关系为:快车所走路程-慢车所走路程+480 公里=600公里。
解:设x小时后两车相距600公里,由题意得,(140-90)x+480=600 50x=120 ∴ x=2.4 答:2.4小时后两车相距600公里。
(4)分析:追及问题,画图表示为:
等量关系为:快车的路程=慢车走的路程+480公里。
甲 乙 解:设x小时后快车追上慢车。
由题意得,140x=90x+480 解这个方程,50x=480 ∴ x=9.6 答:9.6小时后快车追上慢车。
(5)分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。
解:设快车开出x小时后追上慢车。由题意得,140x=90(x+1)+480 50x=570 ∴ x=11.4
答:快车开出11.4小时后追上慢车。
例2. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。A、C两地之间的路程为10千米,求A、B两地之间的路程。
分析:这属于行船问题,这类问题中要弄清:
(1)顺水速度=船在静水中的速度+水流速度; (2)逆水速度=船在静水中的速度-水流速度。
相等关系为:顺流航行的时间+逆流航行的时间=7小时。
解:设A、B两码头之间的航程为x千米,则B、C间的航程为(x-10)千米, 由题意得,
12xx?10??72?88?2解这个方程得x?32.5
答:A、B两地之间的路程为32.5千米。
【专项训练】
一、行程(相遇)问题 A.基础训练
1. 小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,
几分钟后两人相遇?
2. 小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,
小明每分走多少米?
3. 王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强
出发3分钟后赵文出发,几分钟后两人相遇?
4. 两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出
发,每小时行40千米,乙车出发几小时两车相遇?
5. 两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,
甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?
6. 甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相
遇,求两人的速度。
7. 甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,
已知甲比乙每小时多行2千米,求两人的速度。
8. AB两地相距900米。甲乙二人同时从A点出发,同向而行,甲每分行70米,乙每分行50米,
甲到达A点后马上返回与乙在途中相遇,两人从出发到相遇一共用了多少时间?
9. 甲乙两地相距640千米。一辆客车和一辆货车同时从甲地出发,同向而行,客车每小时行46
千米,货车每小时34千米,客车到达乙地后马上返回与货车在途中相遇,问从出发到相遇一共用了多少时间?
B.提高训练
1. 建朋和建博两人骑自行车同时从相距65千米的两地相向而行,经过两小时相遇,已知建朋比
建博每小时多走2.5千米,问建博每小时走多少千米?
2. A、B两地相距360千米,甲车从A地出发开往B地,每小时行驶72千米,甲车出发25分钟
后,乙车从B地出发开往A地,每时行驶48千米,两车相遇后,各自按原来的速度继续行驶,那么相遇后两车相距120千米时,甲车从出发一共用了多少时间?
3. 甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从
相遇到错开需要9秒钟,问两车的速度各是多少?
4. AB两地相距1120千米,甲乙两列火车同时从两地出发,相向而行。甲列火车速度是60千米
每小时,乙列火车的速度是48千米每小时,乙列火车出发时,从火车里飞出一只鸽子,以每小时80千米的速度向甲列火车飞去,当鸽子和甲列火车相遇时,乙列火车距离A地还有多远?
5. 甲、乙两个车站相距168千米,一列慢车从甲站开出,速度为36千米/小时,一列快车从乙站
开出,速度为48千米/小时。
(1)两列火车同时开出,相向而行,多少小时相遇?
(2)慢车先开1小时,相向而行,快车开几小时与慢车相遇?
6. 甲每分钟走70米,乙每分钟走60米,丙每分钟走50米,甲从A地,乙丙从B地同时出发,
相向而行,甲在遇到乙2分钟后又遇见丙,求AB两地距离。
7. 倩倩与欣欣家相距1.8千米,有一天,倩倩与欣欣同时从各自家里出发,向对方家走去,倩倩
家的狗和倩倩一起出发,小狗先跑去和欣欣相遇,又立刻回头跑向倩倩,又立刻跑向欣欣…一直在倩倩与欣欣之间跑动。已知倩倩50米/分,欣欣40米/分,倩倩家的狗150米/分,求倩倩与欣欣相遇时,小狗一共跑了多少米?
二、行程(追击)问题 A.基础训练
1. 姐姐步行速度是75米/分,妹妹步行速度是45米/分。在妹妹出发20分钟后,姐姐出发去追妹
妹。问:多少分钟后能追上?
2. 甲、乙两人从同地出发前往某地。甲步行,每小时走4公里,甲走了16公里后,乙骑自行车
以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲?
3. 一列慢车从A地出发,每小时行60千米,慢车开出1小时后,快车也从A地出发,每小时速
度为90千米,快车经过几小时可追上慢车?
4. 敌我两军相距25千米,敌军以5千米/时的速度逃跑,我军同时以8千米/时的速度追击,并在
相距一千米处发生战斗,问战斗是在开始追击几小时发生的?

