?x?(0,1),
f(x)?2(x?x33)成立;
?x3?1?,等价于(Ⅲ)使f?x??k?x??成立,x??0,3??1?xx31?; F(x)?ln?k(x?)?0,x??0,1?x32kx4?2?k2, F?(x)??k(1?x)?221?x1?x当k?[0,2]时,F?(x)?0,函数在(0,1)上位增函数,F(x)?F(0)?0,符合题意;
(x)?0,x0当k?2时,令F?4?k?2?(0,1), kx0 0 极小值 x (0,x0) - (x0,1) + F?(x) F(x) ? ? F(x)?F(0),显然不成立,
综上所述可知:k的最大值为2.
考点:1.导数的几何意义;2.利用导数研究函数的单调性,证明不等式;3.含参问题讨论.
19.【2015高考广东,理19】设a?1,函数f(x)?(1?x2)ex?a. (1) 求f(x)的单调区间 ;
(2) 证明:f(x)在???,???上仅有一个零点;
(3) 若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平
行(O是坐标原点),证明:m?3a?2?1. e【解析】(1)依题f'?x??1?x2'ex?1?x2∴ f?x?在???,???上是单调增函数; (2)∵ a?1,
?????e?'??1?x?x2ex?0,
∴ f?0??1?a?0且f?a??1?a2ea?a?1?a2?a?0, ∴ f?x?在?0,a?上有零点,
又由(1)知f?x?在???,???上是单调增函数,
??f?x?在???,???上仅有一个零点;
(3)由(1)知令f'?x??0得x??1,又f??1??22???a,即P??1,?a?, ee??∴ kOP2?a?022?e?a?,又f'?m???1?m?em,
?1?0e
【考点定位】导数与函数单调性、零点、不等式,导数的几何意义等知识.
【2015高考湖南,理21】.已知a?0,函数f(x)?esinx(x?[0,??)),记xn为f(x)的从小到大的第n(n?N)个极值点,证明: (1)数列{f(xn)}是等比数列 (2)若a?*ax1e?1ax2,则对一切n?N*,xn?|f(xn)|恒成立.
(1)f'(x)?aesinx?ecosx?e(asinx?cosx)?其中tan??axaxa2?1eaxsin(x??)
1?,0???,令f'(x)?0,由x?0得x???m?,即x?m???,a2m?N*,
对k?N,若2k??x???(2k?1)?,即2k????x?(2k?1)???,则f'(x)?0, 若(2k?1)??x???(2k?2)?,即(2k?1)????x?(2k?2)???,则f'(x)?0, 因此,在区间((m?1)?,m???)与(m???,m?)上,f'(x)的符号总相反,于是 当x?m???(m?N)时,f(x)取得极值,∴xn? n???(n?N*), 此时,f(xn)?e a?n????*sin(n???)?(?1)n?1e a?n????sin?,易知f(xn)?0,而
f(xn?1)(?1)n?2e ????sin?ax???e是非零常数,故数列?f(xn)?是首项为an?????n?1f(xn)(?1)e sin?a?n?1????(2)由(1)知,sin??f(x1)?e a?n????sin?,公比为?eax的等比数列;
1a?12,于
是对一切n?N*,xn?|f(xn)||恒成立,即n????1a2?1e a?n????恒成立,等价于
a2?1e a?n????(?)恒成立(∵a?0), ?aa?n????etet(t?1)设g(t)?(t?0),则g'(t)=,令g'(t)?0,得t?1, 2tt当0?t?1时,g'(t)?0,∴g(t)在区间(0,1)上单调递减; 当t?1时,g'(t)?0,∴g(t)在区间(0,1)上单调递增,
从而当t?1时,函数g(t)取得最小值g(1)?e,因此,要是(?)式恒成立,只需
a2?1111?g(1)?e,即只需a?,而当a?时,tan???e2?1?3,aae2?1e2?1且0????2,于是
????*2?3??e2?1,且当n?2时,n????2?????e2?1,因此对一切32a2?1,故(?)式亦恒成立. n?N,axn??1,∴g(axn)?g(1)?e?2ae?1n???综上所述,若a?1e2?1,则对一切n?N*,xn?|f(xn)|恒成立.
【考点定位】1.三角函数的性质;2.导数的运用;3.恒成立问题.

