通海桑园中学数学“导学案”
第四章 几何图形初步
课题 4.1.1立体图形与平面图形(1) 主编:李彦坤 审核: 班级 姓名
一、教材分析
(一)、学习目标:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;2、能由实物形状想象出几何图形,由几何图形想象出实物形状;3、能识别一些简单几何体,正确区分平面图形与立体图形。
(二)、重点、难点:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。 二、问题导读单:阅读课本114-116页,然后小组讨论交流,回答下列问题 1.几何图形
(1)仔细观察图4.1-1,同学们感受丰富多彩的图形世界; (2)同学们观察图4.1-2回答问题:
从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?
我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为 。 2.立体图形
长方体、 、 、 、圆锥等它们各部分不都在 ,它们是立体图形。 想一想:生活中还有哪些物体的形状类似于这些立体图形呢?
思考:课本115页图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。 3.平面图形
概念:线段、角、三角形、长方形、圆等它们的各部分 ,它们是平面图形。 思考:课本116页图4.1-5的图中包含哪些简单的平面图形?
4、立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系? 三、问题训练单 课本116页练习 四、变式训练:
1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是( ) A. ①②③;B. ③④⑤;C. ① ③⑤;D. ③④⑤⑥
2、下列判断正确的有①正方体是棱柱,长方体不是棱柱;②正方体是棱柱,长方体也是棱柱;③正方体是柱体,圆柱也是柱体;④正方体不是柱体,圆柱是柱体。
A. 1个 B. 2个 C . 3个 D. 4个 五、谈本节课收获与体会:
通海桑园中学数学“导学案”
课题 4.1.1立体图形与平面图形(2) 主编:李彦坤 审核: 班级 姓名
一、教材分析
(一)学习目标:1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看;
2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;
(二)重点:识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形 难点:画出从正面、左面、上面看正方体及简单组合体的平面图形 二、问题导读单:阅读课本117页,然后小组讨论交流,回答下列问题 1、背诵苏东坡《题西林壁》并说说诗中意境。
横看成岭侧成峰, 远近高低各不同。 不识庐山真面目,
只缘身在此山中。
从数学的角度来理解是什么意思呢?
2、探究:分别从正面、左面、上面观察课本117页图4.1-7这个图形,分别画出得到的平面图形。 三、问题训练单:1、分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?
2、画一画:长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形? 3、课本118页练习1 四、变式训练:
1. 如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是( )
A. B. C. D.
2.右图是由几个小立方块所搭几何体的俯视图, 请画出这个几何体的主视图和左视图。
2 1
五、谈本节课收获与体会: 1 2
通海桑园中学数学“导学案”
课题 4.1.1立体图形与平面图形(3) 主编:李彦坤 审核: 班级 姓名 一、教材分析
(一)学习目标:1.能直观认识立体图形和展开图,了解研究立体图形方法。 2.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,培养动手操作能力,初步建立空间观念,发展几何直觉。 (二)重点:了解基本几何体与其展开图之间的关系,体会一个立体按照不同方式展开可得到
不同的平面展开图。难点:正确判断哪些平面图形可以折叠为立体图形;某个立体图形的展开图可以是哪些平面图形
二、问题导读单:阅读课本117-118页,然后小组讨论交流,回答下列问题
1、立体图形的展开:把一些像墨水瓶盒、粉笔盒这样的纸盒沿它的表面适当剪开,可以展平成平面图形。这样的平面图形叫做相应立体图形的 。 长方体、圆柱、圆锥和三棱柱的展开图是什么?画一画
2、立体图形的折叠:下面是一些常见几何体的展开图,你能正确说出这些几何体?
三、问题训练单
动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成,再将所有的展开图画出来,
以上画出了部分了展开图,除此之外还有5种,共有11种, 请你画出其余5种。 四、变式训练:
1.下列图形中,不是正方体的表面展开图的是( )
A. B. C. D.
2. 一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( ) A.和 建 设 B.谐
和 谐 沾
C.沾 益D.益
益
五、谈本节课收获与体会:
通海桑园中学数学“导学案”
课题: 4.1.2点、线、面、体 主编:李彦坤 审核: 班级 姓名 一、教材分析 (一)学习目标:(1)了解几何体、平面和曲面的意义,?能正确判定围成几何体的面是平面还是曲面;(2)了解几何图形构成的基本元素是点、线、面、体及其关系,
?能正确判定由点、线、面、体经过运动变化形成的简单的几何图形;
(二 )重点:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、?体之间的关系。
难点:探索点、线、面、体运动变化后形成的图形。
二、问题导读单:阅读课本119-120页,然后小组讨论交流,回答下列问题 1、长方体有 个面,面与面相交成了 条线,?线与线相交成 个点。 2.几何体的概念:(1)长方体是一个几何体,我们还学过哪些几何体?
_______________________________________________________________________;
(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?
3.面的分类:____面和___面。
面与面相交成线,线有___线和____线;线与线相交成_____;
4. 点、线、面、体的关系:点动成_____,线动成___________,面动成________。 5.点、线、面、体与几何图形关系:几何图形都是由_______________________组成的, 端点个数 延伸方向 线段 能否度量 画图及表示方法 ________是构成图形的基本元素。 三、问题训练单
1.体是由_______围成的,面和面相交形成_______,线和线相交形成______; 2.课本第120页练习1、2;
四、变式训练:
1.人在雪地上走,他的脚印形成一条_______,这说明了______ 的数学原理;
2.将三角形绕直线L旋转一周,可以得到如下图所示立体图形的是( )
A B C D
五、谈本节课收获与体会:
通海桑园中学数学“导学案”
课题 4.2直线、射线、线段(1) 主编:李彦坤 审核:
班级 姓名
一、教材分析
(一)学习目标: 1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质;
2.会用字母表示直线、射线、线段,会根据语言描述画出图形;
(二)重点难点: 理解并掌握直线性质,会用字母表示图形和根据语言描述画出图形; 二、问题导读单:阅读课本125-126页,然后小组讨论交流,回答下列问题 1.填写下列表格:
射 线 直 线
2、直线的性质
经过两点有 条直线,并且 条直线;
简述为: 举例说明直线的性质在日常生活中的应用:
(1) 在挂窗帘时,只要在两边钉两颗钉子扯上线即可,这是因为
(2)建筑工人在砌墙时拉参照线,木工师傅锯木板时,用墨盒弹墨线,都是根据 三、问题训练单
1.下列给线段取名正确的是 ( )
A.线段M B.线段m C.线段Mm D.线段mn 2.如图,若射线AB上有一点C,下列与射线AB是同一条射线的是 ( ) A.射线BA B.射线AC
C.射线BC D.射线CB A B C
3.下列语句中正确的个数有 ( )
①直线MN与直线NM是同一条直线 ②射线AB与射线BA是同一条射线
③线段PQ与线段QP是同一条线段 ④直线上一点把这条直线分成的两部分都是射线. A.1个 B.2个 C.3个 D.4个 4.课本129页练习
四、变式训练:
1.如图,线段AB上有两点C、D,则共有 条线段。
A C D B
2.变形题:往返于甲、乙两地的客车中途要停靠三个车站,有多少种不同的票价?要准备多少种不同的车票?
?五、谈本节课收获与体会:
通海桑园中学数学“导学案”
课题 4.2直线、射线、线段(2) 主编:李彦坤 审核: 班级 姓名 一、教材分析
(一)学习目标:1、会用尺规画一条线段等于已知线段;
2、会比较两条线段的长短;
3、理解线段中点的概念,了解“两点之间,线段最短”的性质。
(二)重点:线段的中点概念,“两点之间,线段最短”的性质; 难点:画一条线段等于已知线段。
二、问题导读单:阅读课本126-128页,然后小组讨论交流,回答下列问题
1、过A、B、C三点作直线,小明说有三条,小颖说有一条,小林说不是一条就是三条,你认为 的说法是对的。 2.作一条线段等于已知线段
作法: (1)作射线AM
(2)在AM上截取AB= a。则线段AB为所求。
·
A B M · 应用:已知线段a、b,求作线段 a b
AB=a+b、线段AB=a-b。
3、比较两条线段的长短的两种方法: 4、线段的中点及等分点
如图(1),点M把线段AB分成相等的两条线段AM与BM,点
M叫做线段AB的 ; 记作AM= 或AM=MB= 或 =2MB=AB。 A M B
A M
(1) (2)N B 如图(2),点M、N把线段AB分成相等的三段AM、MN、NB,点M、N叫做线段AB的 。类似地,还有四等分点,等等。 5、线段的性质
(
两点所连的线中,
简单地说成:___________________________________
两点间的距离的定义:___________________________________ 三、问题训练单
1、课本128页练习1、2
2、在直线上顺次取A、B、C三点,使 AB=4㎝,BC=3㎝,点O是线段AC的中点,则线段OB的长是〔 〕
A、2㎝ B、1.5㎝ C、0.5㎝ D、3.5㎝ 3、已知线段AB=5㎝,C是直线AB上一点,若BC=2㎝,则线段AC的长为 四、变式训练:
1、把弯曲的河道改直后,缩短了河道的长度,这是因为 ;
2、已知,如图,AB=16㎝,C是BC的中点,且AC=10㎝,D是AC的中点,E是BC的中点,求线段DE的长。
· · · A D C E B
五、谈本节课收获与体会:
通海桑园中学数学“导学案”
课题 4.3.1角 主编:李彦坤 审核: 班级 姓名 一、教材分析
(一)学习目标:1、在现实情景中,理解角的概念,掌握角的表示方法;
2、认识角的度量单位:度、分、秒,学会进行简单的换算和角度的计算。
(二)重点难点:角的表示和角度的计算是重点;角的适当表示是难点。 二、问题导读单:阅读课本132-133页,然后小组讨论交流,回答下列问题
1.角的定义1: 有__________________的两条射线组成的图形叫做角。
这个公共端点是角的________,这两条射线是角的__________。
边 A 顶点O
a
1
边 B

