习题 一
1.略.见教材习题参考答案.
2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:
(1) A发生,B,C都不发生; (2) A与B发生,C不发生; (3) A,B,C都发生;
(4) A,B,C至少有一个发生; (5) A,B,C都不发生; (6) A,B,C不都发生; (7) A,B,C至多有2个发生; (8) A,B,C至少有2个发生.
【解】(1) A
BC (2) ABC (3) ABC
(4) A∪B∪C=
ABC∪ABC∪A
BC∪ABC∪
A
BC∪ABC∪ABC=ABC
(5)
ABC=A?B?C (6) ABC
(7)
ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪
ABC=ABC=A∪B∪C
(8) AB∪BC∪CA=AB
C∪ABC∪ABC∪ABC
3.略.见教材习题参考答案
4.设A,B为随机事件,且P(A)=0.7,P(A?B)=0.3,求P(AB).
【解】 P(
AB)=1?P(AB)=1?[P(A)?P(A?B)]
=1?[0.7?0.3]=0.6
5.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求: (1) 在什么条件下P(AB)取到最大值? (2) 在什么条件下P(AB)取到最小值?
【解】(1) 当AB=A时,P(AB)取到最大值为0.6.
(2) 当A∪B=Ω时,P(AB)取到最小值为0.3.
6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P
(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一
事件发生的概率.
【解】 P(A∪B∪C)=P(A)+P(B)+P(C)?P(AB)?P(BC)?P(AC)+P(ABC)
=
1114+4+3?112=34
7.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张
方块,2张梅花的概率是多少? 【解】 p=
C5C3321313C13C13/C1352
8.对一个五人学习小组考虑生日问题:
(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率;
(3) 求五个人的生日不都在星期日的概率.
【解】(1) 设A1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P(A111)=5 75=(
7)(亦可用独立性求解,
下同)
(2) 设A2={五个人生日都不在星期日},有利事件数为65,
故
(A65P2)=
75=(
67)5
(3) 设A3={五个人的生日不都在星期日}
P(A13)=1?P(A1)=1?(
7)5
9.略.见教材习题参考答案.
10.一批产品共N件,其中M件正品.从中随机地取出n件(n 求其中恰有m件(m≤M)正品(记为A)的概率.如果: (1) n件是同时取出的; (2) n件是无放回逐件取出的; (3) n件是有放回逐件取出的. 【解】(1) P(A)= Cmn?mnMCN?M/CN (2) 由于是无放回逐件取出,可用排列法计算.样本点总数有 PnN种,n次抽取中有m次为正品的组合数为Cmn种.对于固定的一种正品与次品的抽取次序,从M件正品中 取m件的排列数有 PmM种,从N?M件次品中取n?m件的排列数为 Pn?mN?M种,故 mn?P(A)= CmPmnPMN?MPn N1 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成 P(A)= Cmn?mMCN?MCn N可以看出,用第二种方法简便得多. (3) 由于是有放回的抽取,每次都有N种取法,故所有可能 的取法总数为Nn种,n次抽取中有m次为正品的组合数为 Cmn种,对于固定的一种正、次品的抽取次序,m次 取得正品,都有M种取法,共有Mm种取法,n?m次取得次品,每次都有N?M种取法,共有(N?M)n?m种取法,故 P(A)?CmMm(N?M)n?m/Nnn 此题也可用贝努里概型,共做了n重贝努里试验,每次取得正品的概率为 MN,则取得m件正品的概率为 P(A)?Cm?M?m?M?n?mn??N????1?N?? 11.略.见教材习题参考答案. 12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太 弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A={发生一个部件强度太弱} P(A)?C1C33103/C50?11960 13.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球, 从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设Ai={恰有i个白球}(i=2,3),显然A2与A3互斥. P(A)?C2C14318P(A)?C3442C3?,3735C3? 735故 P(A222?A3)?P(A2)?P(A3)?35 14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随 机取一粒,求: (1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率. 【解】设Ai={第i批种子中的一粒发芽},(i=1,2) (1) P(A1A2)?P(A1)P(A2)?0.7?0.8?0.56 (2) P(A1?A2)?0.7?0.8?0.7?0.8?0.94 (3) P(A1A2?A1A2)?0.8?0.3?0.2?0.7?0.38 15.掷一枚均匀硬币直到出现3次正面才停止. (1) 问正好在第6次停止的概率; (2) 问正好在第6次停止的情况下,第5次也是出现正面的概率. 【解】(1) pC2113151?5(2)2(2)2?32 (2) C1(1)(1)31p42?2245/32?25 16.甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投 了3次,求二人进球数相等的概率. 【解】 设Ai={甲进i球},i=0,1,2,3,Bi={乙进i球},i=0,1,2,3,则 P(?3A?(0.3)3(0.4)3?C121(0.4)2iBi3)30.7?(0.3)C30.6??i?0 2 22C3(0.7)2?0.3C3(0.6)20.4+(0.7)3(0.6)3 =0.32076 17.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【 4512112241012解】 p?1?CCCCC13? C2118.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A={下雨},B={下雪}. (1) p(BA)?P(AB)0.1??0.2 P(A)0.52 ) ( p(A?B)?P(A)?P(B)?P(AB)?0.3?0.5?0.1?0.7 19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男 孩的概率(小孩为男为女是等可能的). 【解】 设A={其中一个为女孩},B={至少有一个男孩},样本点总数为2=8,故 3 题21图 题22图 【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半 小时以上”等价于|x?y|>30.如图阴影部分所示. P(AB)6/86P(BA)??? P(A)7/87或在缩减样本空间中求,此时样本点总数为7. P(BA)?6 73021P?2? 60422.从(0,1)中随机地取两个数,求: 20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此 人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半). 【解】 设A={此人是男人},B={此人是色盲},则由贝叶斯公式 6的概率; 51(2) 两个数之积小于的概率. 4(1) 两个数之和小于【解】 设两数为x,y,则0 P(A)P(BA)P(AB) P(AB)??P(B)P(A)P(BA)?P(A)P(BA) 6. 5?0.5?0.0520? 0.5?0.05?0.5?0.00252121.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率. 144255?17?0.68 p1?1?1251(2) xy=<. 4 1?1?11p2?1???1dx?1dy???ln2 4x?4?42 3 23.设P(【 A)=0.3,P(B)=0.4,P(AB)=0.5,求P(B|A∪B) 解 】 P(AB)?P(A)P(BA)P(AB)?P(B)P(A)P(BA)?P(A)P(BA) P(AB)P(A)?P(AB) P(BA?B)??P(A?B)P(A)?P(B)?P(AB) ?0.8?0.14??0.3077 0.8?0.1?0.2?0.913即考试不及格的学生中努力学习的学生占30.77%. ?0.7?0.51? 0.7?0.6?0.5426. 将两信息分别编码为A和B传递出来,接收站收到时,A被误收 作B的概率为0.02,而B被误收作A的概率为0.01.信息A与B传递的频繁程度为2∶1.若接收站收到的信息是A,试问原发信息是A的概率是多少? 【解】 设A={原发信息是A},则={原发信息是B} C={收到信息是A},则={收到信息是B} 由贝叶斯公式,得 24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛 中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率. 【解】 设Ai={第一次取出的3个球中有i个新球},i=0,1,2,3.B={第二 次取出的3球均为新球} 由全概率公式,有 P(B)??P(BAi)P(Ai) i?03P(AC)?P(A)P(CA)P(A)P(CA)?P(A)P(CA) 31232132/3?30.983C3CCCCCCCCC6??0.99492 79?36?39?936?38?9362???/3?0.98?1/3?0.01333C15C15C15C15C27.C15C15C1515在已有两个球的箱子中再放一白球,然后任意取出一球,若发现 ?0.089 25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试 及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种) 【解】设Ai={箱中原有i个白球}(i=0,1,2),由题设条件知P(Ai) = 1,i=0,1,2.又设B={抽出一球为白球}.由贝叶斯公式知 3【解】设A={被调查学生是努力学习的},则 A={被调查学生是不努 P(BA1)P(A1)P(A1B) P(A1B)??2P(B)?P(BAi)P(Ai)i?0力学习的}.由题意知P(A)=0.8,P( A)=0.2,又设B={被调 ?查学生考试及格}.由题意知P(B|A)=0.9,P(B|故由贝叶斯公式知 ( 1 A)=0.9, ) 2/3?1/31? 1/3?1/3?2/3?1/3?1?1/3328.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被 误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率. 【解】 设A={产品确为合格品},B={产品被认为是合格品} 由贝叶斯公式得 P(A)P(BA)P(AB) P(AB)??P(B)P(A)P(BA)?P(A)P(BA) P(AB)??0.2?0.11??0.02702 0.8?0.9?0.2?0.137即考试及格的学生中不努力学习的学生仅占2.702% (2) P(A)P(BA)P(AB) ?P(B)P(A)P(BA)?P(A)P(BA) ?0.96?0.98?0.998 0.96?0.98?0.04?0.0529.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失 4

