毕业论文-溶胶凝胶法制备纳米二氧化钛

2026/1/27 12:43:01

1.4.1物理法

物理法是最早采用的纳米材料制备方法,其方法是采用高能消耗的方式,“强制”材料“细化”得到纳米材料。物理法的优点是产品纯度高。 1.4.1.1气相蒸发沉积法

此法制备纳米TiO2粉体的过程为: 将金属Ti 置于钨舟中,在( 2 ~ 10) × 102 Pa 的He 气氛下加热蒸发,从过饱和蒸汽中凝固的细小颗粒被收集到液氮冷却套管上,然后向反应室注入5 ×103 Pa 的纯氧,使颗粒迅速、完全氧化成TiO2

粉体。利用该方法制备的TiO2纳米粉体是双峰分布,粉体颗粒大小为14 nm。 1.4.1.2蒸发-凝聚法

此法是将将平均粒径为3μm的工业TiO2轴向注入功率为60 kW的高频等离子炉Ar-O2混合等离子矩中,在大约10 000 K的高温下,粗粒子TiO2汽化蒸发,进入冷凝膨胀罐中降压,急冷得到10~50 nm的纳米TiO2。 1.4.2化学法

化学法可以根据反应物的物态,将其划分为液相化学反应法、气相化学反应法和固相反应法。此类方法制造的纳米粉体产量大,粒子直径可控,也可得到纳米管和纳米晶须,同时,该法能方便地对粒子表面进行碳、硅和有机物包覆或修饰处理,使粒子尺寸细小且均匀,性能更加稳定。 1.4.2.1液相化学反应法

该方法是生产各种氧化物微粒的主要方法,是指在均相溶液中,通过各种方式溶质和溶剂分离,溶质形成形状、大小一定的颗粒,得到所需粉末的前驱体,加热分解后得到纳米颗粒的方法。液相化学法制备纳米TiO2又分为溶胶-凝胶法、水解法、沉淀法、微乳液法等。

溶胶-凝胶法( Sol - gel 法) 是以钛醇盐为原料,在无水乙醇溶剂中与水发生反应,经过水解与缩聚过程而逐渐凝胶化,再经干燥、烧结处理即可得到纳米TiO2粒子。此法制得的产品纯度高、颗粒细、尺寸均匀、干燥后颗粒自身的烧结温度低,但凝胶颗粒之间烧结性差,产物干燥时收缩大。

水解法是以TiCl4( 化学纯) 作为前驱体,在冰水浴下强力搅拌,将一定量的TiCl4滴入蒸馏水中,将溶有硫酸铵和浓盐酸的水溶液滴加到所得的TiCl4水溶

5

液中搅拌,混合过程中温度控制在15 ℃,此时,TiCl4的浓度为1.1 mol /L,Ti4 + /H+ = 15,Ti4 + /SO2 -4 = 1 /2。将混合物升温至95 ℃并保温1 h 后,加入浓氨水,pH 值为6 左右,冷却至室温,陈化12 h 过滤,用蒸馏水洗去Cl-后,用酒精洗涤3次,过滤,室温条件下将沉淀真空干燥,或将真空干燥后的粉体于不同温度下煅烧,得到不同形貌的TiO2粉体。利用该方法制备的TiO2粉体,粒径仅为7 nm,且晶粒大小均匀。在制备过程中探讨了煅烧温度对粉体的影响,水解反应机理、水解温度对结晶态的影响,硫酸根离子对粉体性能的影响等问题。

沉淀法是向金属盐溶液中加入某种沉淀剂,通过化学反应使沉淀剂在整个溶液中缓慢地析出,从而使金属离子共沉淀下来,再经过过滤、洗涤、干燥、焙烧而得到粒度小分布窄、团聚少的纳米材料。赵旭等采用均相沉淀法,以尿素为沉淀剂,控制反应液钛离子浓度、稀硫酸及表面活性剂十二烷基苯磺酸钠的用量,制备的粒子为20 ~ 30 μm 球型TiO2粒子,该粒子晶体粒径在纳米范围内5 ~ 208 nm。

微乳液法是近年来发展起来的一种制备纳米微粒的有效方法。微乳液是利用两种互不相溶的溶剂在表面活性剂的作用下形成一个均匀的乳液,从乳液中析出固相制备纳米材料的方法。乳液法可使成核、生长、聚结、团聚等过程局限在一个微小的球形液滴内形成一个球形颗粒,避免了颗粒之间进一步团聚。 1.4.2.2 气相化学反应法

气相热解法。该方法是在真空或惰性气氛下用各种高温源将反应区加热到所需温度,然后导入气体反应物或将反应物溶液以喷雾法导入,溶液在高温条件下挥发后发生热分解反应,生成氧化物。1992 年日本Tohokuoniuemi - tu 采用高频感应喷雾热解法以钛氯化物( 如TiCl4) 为原料制备得到四方晶系纳米TiO2 粉末。

气相水解法。日本曹达公司和出光产公司制备纳米氧化钛采用的技术方法主要是以氮气、氦气或空气等作载体的条件下,把钛醇盐蒸汽和水蒸气分别导入反应器的反应区,在有效反应区内进行瞬间混合,同时快速完成水解反应,以反应温度来调节并控制纳米TiO2的粒径和粒子形状。此制备工艺可获得平均

6

粒径为10 ~ 150 nm,比表面积为50 ~ 300 m2 /g 的非晶型纳米TiO2。该工艺的特点是操作温度较低,能耗小,对材质纯度要求不是很高,并在工业化生产方面容易实现续化生产。其主要化学反应为:

nTi( OR)4( g) + 4nH2O( g) →nTi( OH)4( S) + 4nROH( g) nTi( OH)4( S) →nTiO2·H2O( s) + nH2O( g) nTiO2·H2O( s) →nTiO2( s) + nH2O( g) 1.4.3综合法 1.4.3.1 激光CVD 法

该方法集合了物理法和化学法的优点,在80 年代由美国的Haggery 提出,目前,J David Casey 用激光CVD 法已合成出了具有颗粒粒径小、不团聚、粒1.4.3.2 等离子CVD 法

该方法是利用等离子体产生的超高温激发气体发生反应,同时利用等离子体高温区与周围环境巨大的温度梯度,通过急冷作用得到纳米颗粒。该方法有两个特点:

( 1) 产生等离子时没有引入杂质,因此生成的纳米粒子纯度较高;

( 2) 等离子体所处空间大,气体流速慢,致使反应物在等离子空间停留时间长,物质可以充分加热和反应。 1.5本课题研究的目的和意义

如上所述,纳米二氧化钛以其特殊的性能和广阔的发展前景引起科学家们的广泛关注。以其独特的表面效应、小尺寸效 应、量子尺寸效应和宏观量子效应等性质,而呈现出许多奇异的物理、化学性质,使其在众多领域具有特别重要的应用价值和广阔的发展前景。纳米二氧化钛是20世纪80年代末发展起来的一种新型无机化工材料,它具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等性能,纳米TiO2是当前应用前景最为广泛的一种纳米材料, 具有很强的吸收紫外线能力, 奇特的颜色效应, 较好的热稳定性, 化学稳定性和优良的光学、电学及力学等方面的特性。其中锐钛矿型具有较高的催化效率, 金红石型结构稳定且具有较强的覆盖力、着色力和紫外线吸收能力。因而倍受国内外研究学者的关注。

纳米TiO2具有许多优异的性能,不仅具有优异的颜料特性——高遮盖率、高消

7

色力、高光泽度、高白度和强的耐候性外,还具有特殊的力学、光、电、磁功能;更具有高透明性、紫外线吸收能力以及光催化活性、随角异色效应。特别是随着环境污染的日益严重,纳米TiO2高效的光催化降解污染物的能力而成为当前最为活跃的研究热点之一。而其独特的颜色效应、光催化作用及紫外线屏蔽等功能,在汽车工业、防晒化妆品、废水处理、杀菌、环保等方面一经面世就备受青睐。

今年来随着各种技术的发展,纳米TiO2已应用在多种领域中,但由于其在环境治理中有其独特的优点,所以其在环保领域会更有大发展。

众所周知,二氧化钛的组成结构、尺寸大小和形貌特征等因素对其性质影响较大,实现二氧化钛的应用不仅需要充分发挥其本征性质,还可以通过尺寸和形貌控制对其性质进行调控。本文主要是研究使用不同制备方法,在不同条件下制备不同形貌的纳米二氧化钛。 第二章 原材料及表征 2.1试剂及仪器 2.1.1主要试剂

本实验中,所使用的主要试剂如表2.1所示

所有试剂均未经进一步的处理,实验所用水为蒸馏。 2.1.2主要实验仪器

表2.2所示是本实验中所用主要仪器设备及测试所用的大型仪器。 2.2样品的表征

扫描电子显微镜的基本结构如图2.1所示,扫描电子显微镜以炽热灯丝所发射的电子为光源,灯丝发射的电子束在通过栅极之后,聚焦成电子束。在加速电压作用下,通过三个电磁透镜组成的电子光学系统,之后汇聚成直径约几十个埃的电子束照射到被观测样品表面。电子束与样品作用,产生不同的电子其其他射线,如二次电子、背散射电子、透射电子、吸收电子及X射线等。这些信号在经收集器吸收后,传输到放大器,经放大器放大,送至显像管,显示出样品的形貌。在扫描电子显微镜表征样品表面形貌时,用来成像的信号主要是二次电子,所谓二次电子,就是指电子束光源与样品作用,样品中的价电子受激发而脱离出来的电子。本实验中,采用中国科仪公司的KYKY-2800B型的扫描

8

电子显微镜对对样品的表面形貌进行表征,扫描电子显微镜的加速电压为20KV。

第三章 沉淀法制备纳米二氧化钛 3.1制备过程

9


毕业论文-溶胶凝胶法制备纳米二氧化钛.doc 将本文的Word文档下载到电脑
搜索更多关于: 毕业论文-溶胶凝胶法制备纳米二氧化钛 的文档
相关推荐
相关阅读
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 10

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219