/-/-/
∴f(?2)?82?8?6?,f'(?2)??4?8?3?1. 332,即所求切线方程为3x?3y?8?0. 3∴y??x?(?2)??22(2)∵f'(x)??x?4ax?3a??(x?a)(x?3a).
当a?0时,由f'(x)?0,得a?x?3a;由f'(x)?0,得x?a或x?3a. ∴函数y?f(x)的单调递增区间为(a,3a),单调递减区间为(??,a)和(3a,??), ∵f(3a)?0,f(a)??433a, ∴当a?0时,函数y?f(x)的极大值为0,极小值为?
43
3
a. (3)f'(x)??x2?4ax?3a2??(x?2a)2?a2,
∵f'(x)在区间?2a,2a?2?上单调递减,
∴当x?2a时,f'(x)22max?a,当x?2a?2时,f'(x)min?a?4. ∵不等式|f'(x)|?3a恒成立,
?a?0,∴??a2?3a,解得1?a?3, ??a2?4??3a,故a的取值范围是?1,3?.
欢迎访问“高中试卷网”——http://sj.fjjy.org /-/-/

