梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。 直角梯形的定义:有一个角是直角的梯形 等腰梯形的定义:两腰相等的梯形。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。 等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。 解梯形问题常用的辅助线:如图
线段的重心就是线段的中点。 平行四边形的重心是它的两条对角线的交点。 三角形的三条中线交于疑点,这一点就是三角形的重心。 宽和长的比是
5-1(约为0.618)的矩形叫做黄金矩形。 2第二十章 数据的分析
1.加权平均数:加权平均数的计算公式。 权的理解:反映了某个数据在整个数据中的重要程度。 学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。
2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。 3.众数:一组数据中出现次数最多的数据就是这组数据的众数(mode)。
4.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。 5.方差:方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
6. 平均数:平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。 7.数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流
九年级
第二十一章 二次根式 1.二次根式:式子
(a≥0)叫做二次根式。
2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式; (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式。如
不是最简二次根式,因被开方数中含有4是可开得尽方的因数,
又如 , , ..........都不是最简二次根式,而 , ,5 , 都是最简二次根
式。
3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。如
,
,
就是同类二次根式,因为
=2
,
=3
,它们与
的被开方数均为2。
4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。如
与
,a+
与a-
,
-
与
+
,互为有理化因式。
二次根式的性质: 1.
(a≥0)是一个非负数, 即
≥0;
)=a(a≥0); 13
2
2.非负数的算术平方根再平方仍得这个数,即:(
3.某数的平方的算术平方根等于某数的绝对值,即 =|a|=
=
2
(a≥0,b≥0)
4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即
5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即 21.2 二次根式的乘除 1. 二次根式的乘法
两个二次根式相乘,把被开方数相乘,根指数不变,即
= (a≥0,b>0)。
(≥0,≥0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,、都是非负数; (2)
(≥0,≥0)可以推广为
≥0)。
(≥0,≥0)。也称“积的算
(≥0,≥0);
(≥0,≥0,≥0,
(3)等式(≥0,≥0)也可以倒过来使用,即
术平方根”。它与二次根式的乘法结合,可以对一些二次根式进行化简。 2. 二次根式的除法
两个二次根式相除,把被开方数相除,根指数不变,即(≥0,>0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,≥0,在分母中,因此>0;
(2)(≥0,>0)可以推广为(≥0,>0,≠0);
(3)等式(≥0,>0)也可以倒过来使用,即(≥0,>0)。也称“商的算术平方根”。它与二根式的除法结合,可以对一些二次根式进行化简。 3. 最简二次根式
(1)被开方数中不含能开方开得尽的因数或因式; (2)被开方数中不含分母。 21.3 二次根式的加减 1. 同类二次根式
注:判断几个二次根式是否为同类二次根式,关键是先把二次根式准确地化成最简二次根式,再观察它们的被开方数是否相同。
(2)合并同类二次根式:合并同类二次根式的方法与合并同类项的方法类似,系数相加减,二次根号及被开方数不变。
2. 二次根式的加减
(1)二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。
(2)二次根式的加减法与多项式的加减法类似,首先是化简,在化简的基础上去括号再合并同类二次根式,同类二次根式相当于同类项。
一般地,二次根式的加减法可分以下三个步骤进行: i)将每一个二次根式都化简成最简二次根式
ii)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组 iii)合并同类二次根式 3. 二次根式的混合运算
二次根式的混合运算可以说是二次根式乘法、除法、加、减法则的综合应用,在进行二次根式的混合运算时应注
14
意以下几点:
(1)观察式子的结构,选择合理的运算顺序,二次根式的混合运算与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号先算括号内的。
(2)在运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作是“多项式”。 (3)观察式中二次根式的特点,合理使用运算律和运算性质,在实数和整式中的运算律和运算性质,在二次根式的运算中都可以应用。 4. 分母有理化
(1)我们在前面的学习中研究了分母形如 综合起来,常见的有理化因式有:① 化因式为
,④
形式的分式的分母有理化
,②
的有理化因式为 的有理化因式为
,③
的有理
的有理化因式为
,⑤
的有理化因式为
(2)分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。 第二十二章 一元二次方程 22.1 一元二次方程
在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。
22.2 降次——解一元二次方程
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法: 1、直接开平方法:
用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=± m. 2、配方法
1.转化: 2.系数化 3.移项: 4.配方: 5.变形: 6.开方: 3、公式法
公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
22.3 实际问题与一元二次方程
列一元二次方程解应用题是列一元一次方程解应用题的继续和发展
从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.
第二十三章 旋转 23.1 图形的旋转 1. 图形的旋转
(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。
(2)生活中的旋转现象大致有两大类:一类是物体的旋转运动,如时钟的时针、分针、秒针的转动,风车的转动等;另一类则是由某一基本图形通过旋转而形成的图案,如香港特别行政区区旗上的紫荆花图案。
15
(3)图形的旋转不改变图形的大小和形状,旋转是由旋转中心和旋转角所决定,旋转中心可以在图形上也可以在图形外。
(4)会找对应点,对应线段和对应角。 2. 旋转的基本特征:
(1)图形在旋转时,图形中的每一个点都绕旋转中心旋转了同样大小的角度。 (2)图形在旋转时,对应点到旋转中心的距离相等,对应线段相等,对应角相等; (3)图形在旋转时,图形的大小和形状都没有发生改变。 3. 几点说明:
旋转中心的确定分两种情况,即在图形上或在图形外,若在图形上,哪一点旋转过程中位置没有改变,哪一点就是旋转中心;若在图形外,对应点连线的垂直平分线的交点就是旋转中心。 23.2 中心对称
中心对称:把一个图形绕着某一点旋转180°,假如它能够与另一个图形重合,那么这个图形关于这个点对称或中心对称。
中心对称的性质:①关于中心对称的刘遇图形,对应点所连线段都经过对称中心,而且被对称中心所平分。②关于中心对称的刘遇图形是全等形。
中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。
对称点的坐标规律:①关于x轴对称:横坐标不变,纵坐标互为相反数, ②关于y轴对称:横坐标互为相反数,纵坐标不变, ③关于原点对称:横坐标、纵坐标都互为相反数。
第二十四章 圆
1、定义:圆是平面上到定点距离等于定长的点的集合。其中定点叫做圆心,定长叫做圆的半径, 圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆。 对圆的定义的理解:①圆是一条封闭曲线,不是圆面; ②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)。
2、点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则:
①点在圆上<===>d=r;②点在圆内<===>d
3、圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆是中心对称图形,对称中心为圆心。 直径所在的直线是它的对称轴,圆有无数条对称轴。(P58-4、P59-9、P61-3、P63-16、P65-15) 4、与圆相关的概念:
①弦和直径。弦:连接圆上任意两点的线段叫做弦。 直径:经过圆心的弦叫做直径。 ②圆弧、半圆、优弧、劣弧。
圆弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号“⌒”表示, 半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆。 优弧:大于半圆的弧叫做优弧。
劣弧:小于半圆的弧叫做劣弧。(为了区别优弧和劣弧,优弧用三个字母表示。) ③弓形:弦及所对的弧组成的图形叫做弓形。
④同心圆:圆心相同,半径不等的两个圆叫做同心圆。
⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。⑦圆心角:顶点在圆心的角叫做圆心角。⑦弦心距:从圆心到弦的距离叫做弦心距。
5、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
16

