三相交通理论[编辑]
三相交通理论,是玻里斯·柯纳在1996至2002年间提出的一种交通流理论[1][2][3]
。它着重研究如何解释高速公路上交通拥堵转捩的物理原理以及拥堵交通流的性质。不同于经典的基于基本图的交通流理论将交通流划分为自由流和拥堵流两相的做法,柯纳将拥堵流进一步划分为同步流和宽运动堵塞两相,从而得到以下的三相:
? 自由流(Free flow, F)
? 同步流(Synchronized flow, S) ? 宽运动堵塞(Wide moving jam, J) 这里“相”定义为某种时空状态。
目录
? ? ? ? ? ? ? ? ? ? ? ? ? ?
1 自由流(F) 2 拥堵交通流
3 拥堵流中宽运动堵塞相 J 和同步流相 S 的定义 4 F → S的相变:交通拥堵转捩 5 道路通行能力的无穷多值性 6 宽运动阻塞(J) 7 同步流(S)
8 同步流到宽运动阻塞的相变 9 源自S 和J的交通形态
10 三相交通理论在交通工程中的应用 11 出版专著 12 参考文献 13 注释(Notes) 14 参见
自由流(F)
图1 实测的自由流中交通流流量和车辆密度的关系
实测数据显示,在自由流中交通流量 q (车辆数/时间单位)和车辆密度 k (车辆数/长度单位)存在正相关性。这一关系的上边界,也即最大流量,在临界密度
处取得。参见图1.
拥堵交通流
图2 实测的自由流和拥堵流中交通流流量和车辆密度的关系 在拥堵交通流中,车辆速度比在自由流中能达到的最低车速
还要低。通常
可以通过最大流量和临界密度求得从原点出发,通过(
,
,在图中,是
这条直线的斜率(图2虚线所示)。该线将流量
-密度图上的实测数据点分为两个部分:位于左侧的自由流数据点和位于右侧的
拥堵流数据点。
拥堵流中宽运动堵塞相 J 和同步流相 S 的定义
柯纳根据常见的实际交通流时空特征对拥堵流中宽运动堵塞相 J 和同步流相 S进行了如下定义:
宽运动堵塞相 J 的定义:一个宽运动堵塞通过一个高速公路瓶颈时,其下游分界面(downstream front)向上游的平均传播速度保持不变。车辆加速通过堵塞下游分界面驶离堵塞,进入自由流或同步流状态。这就是宽运动阻塞的本质特征。
同步流相 S 的定义:在同步流下游分界面,车辆加速进入自由流状态。同步流的下游分界面不再呈现宽运动堵塞下游分界面的特性,其传播速度并不是一个常数。且通常情况下同步流的下游分界面固定在瓶颈处不动。
通过车辆平均速度的测量,我们可以这样解释宽运动堵塞相 J 和同步流相 S 的
定义。图3(a)中显示了低速拥堵流有着两种时空特征。一种是拥堵流下游分界面的向上游传播的速度几乎为常数,且可以通过瓶颈不受影响;根据上述定义,这种交通流为宽运动阻塞相。另一种是拥堵流下游分界面固定在瓶颈处;根据上述定义,这种交通流为同步流相。
图3 实测得到的交通流速度随时间和空间的变化(a)及其在时空图中的投影(b)
F → S的相变:交通拥堵转捩
在实测中,拥挤交通往往出现在道路瓶颈处,如入匝道,出匝道,道路工事等。这种自由流至拥挤交通的转变被称为交通拥堵转捩。在柯纳的三相交通理论中这种交通拥堵转捩被解释为一个F → S相变。这一解释由已有观测支持,因为在
实测交通数据中,当瓶颈处发生交通拥堵转捩后,拥挤交通的下游分界面固定在瓶颈处。因此,交通拥堵转捩后出现的拥挤交通符合“同步流”交通相的定义。 柯纳指出,实测数据显示,同步流可自发的在自由流中出现(自发F → S相变)或者由外部扰动诱导出现(诱导的F → S相变)。自发的F → S相变意味着在交通拥堵转捩前,瓶颈上下游皆出于自由流状态,即自发的F → S相变是由于瓶颈附近交通流内在扰动的发展演化而成。与之不同,诱导的F → S相变是由于远离瓶颈处的外在扰动发展演化而成。一般来说,这种相变与向上游传播的同步流或宽运动堵塞相关。图3给出了一个瓶颈附近诱导发生的交通拥堵转捩,而形成同步流的实例:同步流是由于宽运动堵塞向上游传播而形成。
柯纳解释F → S相变是由于车辆加速超越前方慢车和车辆减速到前方慢车速度(速度适配,speed adaptation)这两种因素的时空竞争。超车造就自由流,速度适配导致同步流。当车辆无法超车时,将会发生速度适配。柯纳指出超车概率是车辆密度的间断函数(图4):在一个给定的车辆密度,自由流中的超车概率远大于同步流中的超车概率。
图4 柯纳的三相交通理论中,使用Z型非线性超车概率的间断函数解释交通拥堵转捩。虚线表示临界超车概率和交通密度之间的函数关系。
道路通行能力的无穷多值性
自发的交通拥堵转捩(例如一个自发的自由流到同步流的相变)可能在流量范围很宽的自由流中发生。根据实测数据,柯纳认为,由于自发或者瓶颈诱导的交通拥堵转捩的随机性,道路通行能力有无穷多个值。其大小在最低通行能力 到自由流所代表的最大通行能力 之间,参见图5。

