D.角平分线上的点到角两边的距离相等
图X4-2-3
图X4-2-4
9.(2012年山东临沂)如图X4-2-4,在Rt?ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=________cm.
10.(2010年湖北十堰)如图X4-2-5,?ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.
图X4-2-5
11.(2012年四川宜宾)如图X4-2-6,点A,B,D,E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.
图X4-2-6
12.(2012年四川广元)如图X4-2-7,在?AEC和?DFB中,∠E=∠F,点A,B,C,D在同一直线上,有如下三个关系式:①AE∥DF;②AB=CD;③CE=BF.
(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果?,?,那么?”);
(2)选择(1)中你写出的一个命题,说明它正确的理由.
图X4-2-7
49
13.如图X4-2-8所示,两根旗杆间相距12 m,某人从点B沿BA走向点A,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM,已知旗杆AC的高为3 m,该人的运动速度为1 m/s,求这个人运动了多长时间?
图X4-2-8
B级 中等题
14.(2012年黑龙江绥化)如图X4-2-9所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B,D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为________(提示:∠EAD+∠FAB=90°).
图X4-2-9
图X4-2-10
图X4-2-11
15.(2012年黑龙江)如图X4-2-10,在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是( )
A.15° B.20° C.25° D.30°
16.(2011年湖南衡阳)如图X4-2-11,在?ABC中,∠B=90°,AB=3,AC=5,将?ABC折叠,使点C与点A重合,折痕为DE,则?ABE的周长为________.
C级 拔尖题
17.(2012年辽宁阜新)(1)如图X4-2-12,在?ABC和?ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
①当点D在AC上时,如图X4-2-12(1),线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;
②将图X4-2-12(1)中的?ADE绕点A顺时针旋转α角(0°<α<90°),如图X4-2-12(2),线段BD,CE有怎样的数量关系和位置关系?请说明理由.
(2)当?ABC和?ADE满足下面甲、乙、丙中的哪个条件时,能使线段BD,CE在(1)中的位置关系仍然成立?不必说明理由.
甲:AB∶AC=AD∶AE=1,∠BAC=∠DAE≠90°; 乙:AB∶AC=AD∶AE≠1,∠BAC=∠DAE=90°;
50

