七年级下学期一、二章复习题
一、静心选一选
1. 如果一个角的补角是150°,那么这个角的余角的度数是( )
A、30° B、60° C、90° D、120 2. 下列各式中计算正确的是( )
A 、(?x3)2?x5 B、[(?x)2]3?x6 C、(xn?1)2?x2n?1 D、x5?x2?x10
3.某种冠状病毒的直径是120纳米,1纳米=10-9米,则这种冠状病毒的直径用科学记数法表示为( )
A、1.2×10-9米 B、1.2×10-8米 C、1.2×10-7米 D、1.2×10-6米
232cm4. 一个正方形的边长增加了2cm,面积相应增加了,则这个正方形的边
D C 43 1 2 A A E B BE D C
图9 图10
11.如图2,∠1=20°, ∠AOC=90°,点B、O、D在同一直线上,则?2的度数为( )
A、115° B、110° C、120° D、105° 12.如图3,下列条件中能判定AB∥CE的是( )
A.∠B=∠ECD B.∠B=∠ACB C.∠A=∠ECD D.∠B=∠
ECD
C BD C 21A
B
E
DOA长为 ( ) A 6cm B 5cm C 8cm D 7cm 5.下列算式能用平方差公式计算的是( ) A、(3a+b)(3b-a) B(
11x+1)( -x-1) 66C、(2x-y)(-2x+y) D、(-m+n)(-m-n)
6、若x +ax+9=(x +3),则a的值为 ( )
A、3 B、±3 C、6 D、±6 7.已知x?2
2
图1 图2 图3
二、耐心填一填
13. ∠1与∠2互余,∠2与∠3互补,∠1=63°,那么∠3=
y??5,xy?3,则x2?y2?( )
A. 25. B ?25 C 19 D、?19 8.如图9所示,不能推出AD∥BC的是
A.∠DAB+∠ABC=180° B.∠2=∠4 C.∠1=∠3 D.∠CBE=∠DAE 9.如图10所示,AD⊥BC,DE∥AB,则∠ADE与∠B的关系是
A.相等 B.互补 C.互余 D.不能确定
10.如图1,所示是一条街道的路线图,若AB//CD,且∠ABC = 130o,那么当∠CDE等于( )时,BC//DE
A.40o B. 50o C.70o D. 130o
_;?x?1??______________ 14. 计算: ?x?1??x?1??__________220132?2012?2014=__________.
15. 若10m=5,10n=3,则102m-3n的值是
16. 直线AB与CD相交于点O,OE平分∠AOD,∠AOD=?120° DAOEB则∠AOE= . 17. 若x2?2mx?9是完全平方式。则m=_____________.
C 1
18.已知:x?y??6,xy?2,代数式(x?y)2= 21(x?2y)?(x?y)(x?y)x??2,y?22、先化简,再计算(1),其中
219. 若(x2+mx-8) (x2-3x+n)的乘积中不含x2和x3项,
则m= ,n=_______.
20. 已知∠ACB=90°,即直线AC BC;若BC=4cm,AC=3cm,AB=5cm,那么点
B到直线AC的距离等于 ,点A到直线BC的距离等于 ,A、B两点间
C
的距离等于 。
21.(1)如图,已知∠A=∠F,∠C=∠D,
根据图形填空,并在括号内注明理由。 解: ∠A=∠F
AC∥________(内错角相等,两直线平行)
∠1 =∠D(_________________________________) ∠1 =∠D ∠C =∠D
∠1=___________(等量代换)
BD∥___________(___________________________________________
(2)已知:如图,AB∥CD,∠A = ∠D,试说明 AC∥DE 成立的理由。
A下面是某同学进行的推理,请你将他的推理过程补充完整。(6分) D
22.(7分)如图12所示,EF平分∠BEG,GF平分∠DGE,若∠1+∠2=90°,猜测AB、CD的位置关系?请说明理由.
E A B A
F
B
1 2F D
C G C
E
1 B
D
A
解:∵ AB ∥ CD (已知)
∴ ∠A = ∠ (两直线平行,内错角相等) 又∵ ∠A = ∠D
∴ ∠ = ∠ (等量代换)
∴ AC ∥ DE ( )
BCE
23、如图,已知AB//CD,试猜测∠BED、∠B和∠D满足的数量关系,并试说明理由。 解:你的结论是:
B理由: A
E
CD
2

