骨传导作用外,还具有骨形成促进作用,能在材料组织界面引起胞内和胞外反应;另一类材料只具有骨传导作用,仅仅引起胞外反应。生物活性玻璃属于第一类材料,具有良好的骨传导和骨形成作用。
由于生物玻璃表面在人体的生理环境中可发生一系列的化学反应,并可直接参与人体骨组织的代谢和修复过程,最终可以在材料表面形成与人体骨相同的无机矿物成分——碳酸羟基磷灰石[ Ca10(PO4)6 (2OH-,CO32-) ] ,并诱导活骨组织的生长,所以可用于人体骨缺损的填充和修复。
生物活性玻璃作为骨替代材料具有以下优点:(1)骨形成迅速,除骨引导作用以外,在颗粒内部及其周围也可见骨生成。(2)颗粒大小均匀,由于颗粒之间空隙和材料表面的大量微孔存在,为血管和组织的长人和紧密结合提供了良好条件。(3)操作性能良好,生物相容性好,有黏附性和局部止血作用。(4)X线阻射,便于术后检查。(5)具有降解性,颗粒可被吸收,最终形成骨样结构。
对生物活性材料在体内与骨组织结合面的研究发现,材料在体内环境中表面会形成一层类骨羟基磷灰石(Hydroxyapatite,HA)层,骨组织通过HA层与材料进行结合。在力学实验中,断裂不是发生在骨的一侧就是发生在材料一侧,界面结合处却完好无损,表明HA层与骨结合密切,材料在体液环境中沉积HA层的能力成为评判材料活性的一个重要依据。以Ca-Si为基础的生物玻璃。在体液环境中,其表面形成一层富硅层,诱导HA的沉积,从而显示出生物活性。与磷酸钙生物材料相比,生物活性玻璃的组分范围要广,各种对人体无害和能促进骨组织生长的离子都可以添加到生物活性玻璃中以改善其性能。由于生物活性玻璃优良的生物活性和可调节的化学组成,其性能如活性、降解性和力学性能都可以人为调节和控制,使生物活性玻璃成为骨组织修复材料的一个研究热点。
国内外许多科学家对此进行了研究。陈晓峰[14]利用溶胶-凝胶法制备了CaO-P2O- SiO2系统生物活性材料,实验表明该类材料为无定形态材料,具有良好的生物活性、组织与细胞亲和性及生物矿化功能,是一类新型的骨修复和骨组织工程材料,可单独或与具有良好生物相容性的高分子类生物材料复合制成性能理想的新型骨组织工程支架。另外还对溶胶-凝胶过程中所需的催化剂进行了选择和研究,研究表明以盐酸为催化剂所制得的溶胶-凝胶生物玻璃具有相对更高的比表面积和较小的平均孔径。
张梅梅等[15]通过溶胶-凝胶法合成制备了CaO-P2O5-SiO2系统生物活性玻璃,并通过一定的烧结工艺将其制备成用作骨组织工程支架的多孔材料。
宁佳等[16]采用熔融的方法制备出了Na2O-CaO-SiO2-P2O5-B2O3系生物玻璃,发现当玻璃中B2O3/SiO2的摩尔比为3:1时,生物活性较好。随着B2O3与SiO2的摩尔比减小,玻璃的降解速度变慢,获得的羟基磷灰石结晶度较低。利用此特性可控制生物玻璃的降解速度,从而与骨细胞生长速度相匹配。因此,所得到的硼硅酸盐生物活性玻璃有望在硬组织工程支架材料中得到应用。
Anbalagan Balamurugan和Gerard Balossier 等[17]在CaO-P2O5-SiO2系统生物材料的基础上引入少量的Zn,制成CaO-P2O5-SiO2-ZnO生物活性玻璃。通过实验发现少量Zn的引入,不仅没有降低材料的生物活性,而且可以刺激早期细胞的增殖。
Na Li等[18]通过研究发现加入聚乙二醇( PEG) 到生物活性玻璃凝胶中可以制得大孔溶胶凝胶生物玻璃。运用这种方法,可以通过改变加入PEG粒子的粒径大小有效地控制块体生物玻璃孔径大小,使制备的骨修复材料能同时满足强度和生物活性的要求。
生物活性玻璃具有金属材料及有机材料无法比拟的优点,如生物相容性好,无毒副作用,可与骨骼形成骨性键合.并且耐化学腐蚀等,但是它同样存在着致命的不足, 与人体骨相比生物活性玻璃脆性大,尤其是抗弯强度不足,严重限制了该类材料的使用范围。目前生物活性玻璃主要用于骨损伤修复及骨料填充等非承载部位。
植入体内的BG的降解有以下几个机制:(1)物理降解,包括由磨损、折断、断裂等物理作用造成的材料结构的破坏和质量的损耗;(2)化学降解,主要是材料的水解、晶体结构的破坏和小分子降解颗粒的形成与扩散:(3)生物降解,就是巨噬细胞和多核吞噬细胞等白细胞的参与下将化学降解得到的小颗粒进一步分解、消化,并将其运送至周围组织进入循环系统的过程。三种降解过程使得BG颗粒在生物组织中被逐步降解和吸收,其降解速率与其促进骨修复的速度相适应,在促进新骨形成的同时,本身亦随降解而从体内消失,并为新生组织所代替。
3.2在口腔治疗中的应用
3.2.1 髓室穿孔的覆盖修复材料
临床上,龋损、病理性吸收或髓腔解剖变异、操作不当等,都可造成髓腔穿通至牙周组织,如不及时用生物材料修复,常导致穿孔区牙周组织的慢性炎症,继而发生牙周附着丧失, 牙槽骨、牙骨质及牙本质吸收,牙周袋形成,从而导致牙髓治疗失败,甚至患牙的拔除。目前虽然已有多种材料用于髓室穿孔的修复,但效果似乎都不甚理想[19]。溶胶-凝胶BG微粒具有一定的流动性和良好的粘附性,植入髓室穿孔处与血液及牙槽骨骨组织接触时,可在瞬间与组织间发生复杂的离子交换,在BG的表面形成富硅凝胶层,并聚集形成无定形碳酸羟磷灰石层,通过钙磷层的快速形成并沉积在穿孔区牙周组织内,最终钙化,形成牙骨质和牙周新附着[20]。BG克服了以往覆盖修复材料生物相容性差、炎症反应重、妨碍牙周组织修复的缺点,为更多髓室穿孔牙的保存提供了可能,生物活性玻璃有望成为髓室穿孔的理想覆盖修复材料。
3.2.2 牙科植入材料
植入体与自然骨结合界面的稳定性与植入体成功和失败有密切关系。溶胶-凝胶BG在体内可与自然骨组织形成键结合,生长在一起,其组成结构中含有能够通过人体正常的新陈代谢途径进行置换的钙、磷等元素,有与自然骨在化学组成、结构上都相同的基本结构单元——磷灰石晶体Ca10(PO4)6 ,可以促进骨组织较快生成和生长。溶胶-凝胶BG在体内不但能与骨组织牢固键合,还能够与软组织键合,在一定成分范围内具有可控释放和降解的能力,是目前惟一能诱导生长因子的生成、促进细胞繁殖、活化细胞基因表达的人工合成的无机材料[21-23],已用于填充治疗小型骨骼缺损、治疗牙周疾病以及牙槽骨的增高和增宽术[24]。采用溶胶-凝胶工艺制备的可加工的生物活性微晶玻璃制成复杂的植入体,它具有较高的机械强度,植入体内后能与周围组织交互生长为骨性结合,作为种植体植入材料具有良好的应用前景
[25]
。
据报道[26],目前已经有两种生物玻璃的牙科材料产品由美国生物公司(U.S Biomaterials Corporation) 开发进入市场,一种是PerioGlas 粉( 90~710μm),它是牙周炎的克星。牙周炎是牙根与牙床脱裂而致,PerioGlas既能与牙根成键联结,也能与牙床成键联结,因此PerioGlas 粉剂的填入能使牙根、牙床再次紧密相联,使病人免受痛苦。另外一种是Nova Min,含有生物玻璃粉末的牙膏( 由
U.S.Biomaterials Corporation研制),用于治疗牙齿对冷热过敏及牙周疾病。
3.3在创口愈合中的应用
生物活性玻璃具有良好的生物相容性和生物活性,传统上用作人工骨或骨诱导剂,但有学者研究发现其也能与软组织结合而促进软组织的再生[27]。其机理为:当该材料植入人体内,在体液的作用下,Na+、Ca2+等活性大的离子首先溶出,体液中的H+进入玻璃表面形成Si-0H-,然后由于Si-O-Si 键破坏,无规网络被溶解,可溶性硅以硅醇形式被放出,并且迅速在材料粉体表面形成一个羟基磷灰石胶结层。可溶性硅有分子水平结缔组织的代谢作用和结构作用,生物玻璃溶解后,局部Si 浓度的升高可促进细胞新陈代谢的细胞内部响应,激发促创伤愈合因子的自分泌反应,参与创伤修复的所有细胞在促创伤愈合因子的刺激下加速生长和分裂,并聚集于材料表面形成的羟基磷灰石胶结层,使新生组织能整个创面顺利爬移和覆盖。BG已成功应用于口腔溃疡和烧伤的治疗,并取得良好的效果[28、29]。
3.4在药物载体方面的应用
药物治疗载体是生物玻璃最有前景的应用之一[30]。各类药物储存在多孔的生物玻璃中,植入人体的关键部位,随着生物玻璃表面反应的进行,药物释放,达到有的放矢的治病目的,与传统的注射方法相比,有均匀、长时间治疗等众多的优点,有最大效率的疗效。
3.5 在癌症治疗方面的应用
生物玻璃被埋入肿瘤附近、对癌细胞进行直接放射或热处理、只杀死癌细胞而又不损伤正常组织。注入磷离子或钇等放射性元素后的生物玻璃,经中子照射下,产生β射线以达到长期治疗的目的。
Luderer 等在Al2O3-SiO2-P2O5玻璃基质中掺加铁酸锂,使其成为铁磁玻璃陶瓷,并作为热种子用于癌症的热疗。在CaO-SiO2为基质的玻璃陶瓷中掺加Fe3O4,用其形成的生物活性铁磁陶瓷对癌细胞进行热疗,发现其对骨癌细胞有效
4 生物活性玻璃的发展
但是目前有关生物活性玻璃的临床应用还不够广泛,不能完全满足实际应用的要求,对其研究不够彻底。主要有以下几点:(1)生物活性玻璃含有的硅成分在体内不能完全降解并且其代谢机理尚不清楚,最终不能完全转化成人体骨组织成分;(2)生物活性玻璃的机械强度低,脆性大,尤其是其抗弯强度差,严重限

