基于单片机C语言的循迹小车设计报告-科技文化节作品 - 图文

2026/1/20 3:05:43

循迹小车设计报告

部装一个万向轮。这样,当两个直流电机转向相反同时转速相同时就可以实现电动车的原地旋转,由此可以轻松的实现小车坐标不变的90度和180度的转弯。

在安装时我们保证两个驱动电机同轴。当小车前进时,左右两驱动轮与后万向轮形成了三点结构。这种结构使得小车在前进时比较平稳,可以避免出现后轮过低而使左右两驱动轮驱动力不够的情况。为了防止小车重心的偏移,后万向轮起支撑作用。

对于车架材料的选择,我们经过比较选择了有机玻璃。用有机玻璃做的车架比塑料车架更加牢固,比铁制小车更轻便,美观。

综上考虑,我们选择了方案2。 小车底盘如图2所示:

图2 车体底盘图

3.2控制器模块

方案1:采用可编程逻辑期间CPLD 作为控制器。CPLD可以实现各种复杂的逻辑功能、规模大、密度高、体积小、稳定性高、IO资源丰富、易于进行功能扩展。采用并行的输入输出方式,提高了系统的处理速度,适合作为大规模控制系统的控制核心。但本系统不需要复杂的逻辑功能,对数据的处理速度的要求也不是非常高。且从使用及经济的角度考虑我们放弃了此方案。

方案2:采用STC的8位单片机,它是8位控制器,具有体积小、驱动能力高、集成度高、易扩展、可靠性高、功耗低、结构简单、中断处理能力强等特点。处理速度高,尤其适用于语音处理和识别等领域。但是当凌阳单片机应用语音处理和辨识时,由于其占用的CPU资源较多而使得凌阳单片机同时处理其它任务的速度和能力降低。

本系统主要是进行寻迹运行的检测以及电机的控制。如果单纯的使用凌阳单片机,在语音播报的同时小车的控制容易出现不稳定的情况。从系统的稳定性和编程的简洁性考虑,我们放弃了单纯使用凌阳单片机而考虑其它的方案。

- 3 -

循迹小车设计报告

方案3:采用Atmel公司的ATmaga32L单片机作为主控制器。ATmaga32L是一个低功耗,高性能的8位单片机,片内含32k空间的可反复擦些100,000次的Flash只读存储器,具有2Kbytes的随机存取数据存储器(RAM),32个IO口,2个8位可编程定时计数器,1个16位可编程定时计数器,四通道PWM,内置8路10 位ADC。且maga系列的单片机可以在线编程、调试,方便地实现程序的下载与整机的调试。

从方便使用的角度考虑,我们选择了方案2。

3.3电源模块

由于本系统需要电池供电,我们考虑了如下集中方案为系统供电。

方案1: 采用6节1.5V干电池供电,电压达到9V,但干电池电量有限,使用大量的干电池给系统调试带来很大的不便,因此,我们放弃了这种方案。

方案2:采用2节4.2V可充电式锂电池串联共8.4V给直流电机供电,锂电池的电量比较足,并且可以充电,重复利用,因此,这种方案比较可行。因此我们选择了此方案。

方案3:采用9V蓄电池为直流电机供电,将9V电压降压、稳压后给单片机系统和其他芯片供电。蓄电池具有较强的电流驱动能力以及稳定的电压输出性能。虽然蓄电池的体积过于庞大,在小型电动车上使用极为不方便,但由于我们的车体设计时留出了足够的空间,并且蓄电池的价格比较低。

综上考虑,根据实际情况,我们选择了方案2。

3.4寻迹传感器模块

方案1:用光敏电阻组成光敏探测器。光敏电阻的阻值可以跟随周围环境光线的变化而变化。当光线照射到白线上面时,光线发射强烈,光线照射到黑线上面时,光线发射较弱。因此光敏电阻在白线和黑线上方时,阻值会发生明显的变化。将阻值的变化值经过比较器就可以输出高低电平。

但是这种方案受光照影响很大,不能够稳定的工作。因此我们考虑其他更加稳定的方案。

方案2:用红外发射管和接收管自己制作光电对管寻迹传感器。红外发射管发出红外线,当发出的红外线照射到白色的平面后反射,若红外接收管能接收到反射回的光线则检测出白线继而输出低电平,若接收不到发射管发出的光线则检测出黑线继而输出高电平。这样自己制作组装的寻迹传感器基本能够满足要求。

方案3:用RPR220型光电对管。RPR220是一种一体化反射型光电探测器,其发射器是一个砷化镓红外发光二极管,而接收器是一个高灵敏度,硅平面光电三极管。

RPR220采用DIP4封装,其具有如下特点:

- 4 -

循迹小车设计报告

塑料透镜可以提高灵敏度。

内置可见光过滤器能减小离散光的影响。 体积小,结构紧凑。

当发光二极管发出的光反射回来时,三极管导通输出低电平。此光电对管调理电路简单,工作性能稳定。但考虑到这个价格贵和难买。

因此我们选择了方案2。

3.5电机模块

本系统为智能电动车,对于电动车来说,其驱动轮的驱动电机的选择就显得十分重要。由于本实验要实现对路径的准确定位和精确测量,我们综合考虑了一下两种方案。

方案1:采用步进电机作为该系统的驱动电机。由于其转过的角度可以精确的定位,可以实现小车前进路程和位置的精确定位。虽然采用步进电机有诸多优点,步进电机的输出力矩较低,随转速的升高而下降,且在较高转速时会急剧下降,其转速较低,不适用于小车等有一定速度要求的系统。经综合比较考虑,我们放弃了此方案。

方案2:采用直流减速电机。直流减速电机转动力矩大,体积小,重量轻,装配简单,使用方便。由于其内部由高速电动机提供原始动力,带动变速(减速)齿轮组,可以产生较大扭力。

我们所选用的直流电机减速比为1:74,减速后电机的转速为100r/min。我们的车轮直径为6cm,因此我们的小车的最大速度可以达到

V=2πr·v=2*3.14*0.03*100/60=0.314m/s

能够较好的满足系统的要求,因此我们选择了方案2。

3.6电机驱动模块

方案1:采用专用芯片L298N作为电机驱动芯片。L298N是一个具有高电压大电流的全桥驱动芯片,它相应频率高,一片L298N可以分别控制两个直流电机,而且还带有控制使能端。用该芯片作为电机驱动,操作方便,稳定性好,性能优良。

方案2:对于直流电机用分立元件构成驱动电路。由分立元件构成电机驱动电路,结构简单,价格低廉,在实际应用中应用广泛。但是这种电路工作性能不够稳定。

因此我们选用了方案1。

4、最终方案

经过反复论证,我们最终确定了如下方案:

- 5 -

循迹小车设计报告

(1)车体用有机玻璃车架手工制作。 (2)采用STC89C52单片机作为主控制器。

(3)采用2节4.2V可充电式锂电池串联共8.4V给直流电机供电,为单片机系统和其他芯片供电。

(4)用TCRT5000型红外对管进行寻迹。 (5)L298N作为直流电机的驱动芯片。 系统的结构框图如图3所示:

图3 系统结构框图

二、硬件实现及单元电路设计

1、微控制器模块的设计

采用STC公司的STC89C52单片机,不用烧写器而只用串口或者并口就可以往单片机中下载程序。

我们在开发过程中使用开发版,方便程序的调试和整机的测试,待系统调试完成后,将单片机从开发板上取下,安装在小车系统板的单片机座中,由于本次设计要求中,小车需要完成的任务比较简单,因此我们在小车系统板的单片机系统中保留了晶振电路和下载电路。

2、光电对管电路的设计

- 6 -


基于单片机C语言的循迹小车设计报告-科技文化节作品 - 图文.doc 将本文的Word文档下载到电脑
搜索更多关于: 基于单片机C语言的循迹小车设计报告-科技文化节作品 - 图文 的文档
相关推荐
相关阅读
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 10

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219