高考资源网(www.ks5u.com),您身边的高考专家
?2x?3?312x?7?8x?24x?3 (Ⅱ)由(Ⅰ)可知a?3,b?, ??8??2x?31112??x?x?2x?7222可知使
f(x)?ax?a恒成立的常数k=8. ?k?f(x)?bx?b(Ⅲ)由(Ⅱ)知
an?3a?3 ?8n?111an?an?1?22可知数列{an?3a?3为首项,8为公比的等比数列 }是以111an?a1?22即以?a?344为首项,8为公比的等比数列. 则n???8n?1
133an?214n?1??89?2?8n?123. an??n?143?4?81??8n?133?9. 解:(Ⅰ)由题可知函数定义域关于原点对称.
?x?0, 当x?0时,x2?x?4(?x2)?(?x)?4x2?x?4,f(?x)?? 则f(x)?, x(?x)x ∴f(x)?f(?x).
?x?0, 当x?0时,x2?x?4(?x2)?(?x)?4x2?x?4,f(?x)??? 则f(x)??, x(?x)x ∴f(x)?f(?x).
综上所述,对于x?0,都 有f(x)?f(?x),∴函数f(x)是偶函数.
x2?x?44?x??1, (Ⅱ)当x>0时,f(x)?xx欢迎广大教师踊跃来稿,稿酬丰厚。www.ks5u.com
9 高考资源网(www.ks5u.com),您身边的高考专家
设x2?x1?0,则f(x2)?f(x1)?x2?x1(x1?x2?4)
x1?x2当x2?x1?2时,f(x2)?f(x1)?0;当2?x2?x1?0时,f(x2)?f(x1)?0, ∴函数f(x)在(0,2]上是减函数,函数f(x)在[2,??)上是增函数.
x2?x?444(另证:当x?0时,f(x)??x??1,f?(x)?1?2;
xxx∵0?x?2?0?x2?4?44?1?1??0 22xx44x?2?x2?4?0?2?1?1?2?0
xx∴函数f(x)在(0,2]上是减函数,在[2,??)上是增函数.
10. 略解、(1)因为f′(x)=3ax2+2x-1,依题意存在(2,+∞)的非空子区间使3ax2+2x-1>0成立,即3a?最小值为?1?2x1?2x 在x∈(2,+∞)某子区间上恒成立,令h(x)=,求得h(x)的22xx3?1?,故a???,0???0,??? 4?4?(2)由已知a>0
令f′(x)=3ax2+2x-1>0 得
x??1?1?3a?1?1?3a?1?1?3a?1?1?1?3a?2或x?,?a?0??,?3a3a3a3a3a3a2121??1?,?)上是减函数,又?f???2??0 即f(x)在区间
a3a3a?3a?9a故f(x)在区间(?(?2121,?)上恒大于零。故当a>0时,函数在f(x)在区间(?,?)上不存在零3a3a3a3a点
11. (1)f(1)=3 f(2)=6
当x=1时,y=2n,可取格点2n个;当x=2时,y=n,可取格点n个 ∴f(n)=3n
(2)Tn?f(n)f(n?1)3n(3n?3) ?2n2n欢迎广大教师踊跃来稿,稿酬丰厚。www.ks5u.com
10 高考资源网(www.ks5u.com),您身边的高考专家
(3n?3)(3n?6)n?1Tn?1n?22???3n(3n?3)Tn2n2nn?2?1 当n?1时, 2nn?2当n?2时,?12nn?2当n?3时,?12n ∴T1
27 227 2?3?由?1?可知1?1???1?f?n?1?f?n?2?f?2n?21?111???????3?n?1n?22n?2??1?2?1?2?1??????????????n?1n?2????2n??????11??1????????n?1n?22n???1?1???1???n个1?1?11??n??????n?n?1??n?1??n?2????2n?12n??1111?1?1?n?????????2n?2?nn?1n?1n?2?1112?????,得证。n?1n?22n2
12. 解:∵a??1,x?,b?x?x,?x,∴a?b?x?x?x?x
2??22∴a?b??1a?b?m?x?1?m xx2?mx?11?0 (1)x??m?xx∵?2?m?2,则????m??4?1?1?m?4?0
22∴x?mx?1?0恒成立.
2x2?mx?1?0?x?0 ∴
x∴所求的不等式的解集为?x?R|x?0?
欢迎广大教师踊跃来稿,稿酬丰厚。www.ks5u.com
11 高考资源网(www.ks5u.com),您身边的高考专家
(2)∵x?0,∴x? ∴函数y?x? 要使a?b??1?2,当且仅当x?2时等号成立, x1有最小值2. x1?m恒成立?x?a?b1?m恒成立,所以m?2. x ∴m的取值集合为?m|m?2?.
欢迎广大教师踊跃来稿,稿酬丰厚。www.ks5u.com
12

