高中数学必修1+必修4知识点归纳
必修1:集合、函数概念与基本初等函数(指、
对、幂函数)
必修4:基本初等函数(三角函数)、平面向量、
三角恒等变换。
域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法
1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法:
(1)定义法:设x1、x2?[a,b],x1?x2那么
必修1数学知识点 第一章:集合与函数概念 §1.1.1、集合
1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个
集合相等。 3、 常见集合:正整数集合:N或N?,整数集合:*f(x1)?f(x2)?0?f(x)在[a,b]上是增函数; f(x1)?f(x2)?0?f(x)在[a,b]上是减函数.
步骤:取值—作差—变形—定号—判断 格式:解:设x1,x2??a,b?且x1?x2,则:
f?x1??f?x2?=…
(2)导数法:设函数y?f(x)在某个区间内可导,若f?(x)?0,则f(x)为增函数; 若f?(x)?0,则f(x)为减函数. §1.3.2、奇偶性
1、 一般地,如果对于函数f?x?的定义域内任意一个
Z,有理数集合:Q,实数集合:R.
4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系
1、 一般地,对于两个集合A、B,如果集合A中任
意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作A?B.
2、 如果集合A?B,但存在元素x?B,且x?A,则称集合A是集合B的真子集.记作:AB. 3、 把不含任何元素的集合叫做空集.记作:?.并规定:
空集合是任何集合的子集. 4、 如果集合A中含有n个元素,则集合A有2个子
集,2?1个真子集.
§1.1.3、集合间的基本运算
1、 一般地,由所有属于集合A或集合B的元素组成
的集合,称为集合A与B的并集.记作:A?B. 2、 一般地,由属于集合A且属于集合B的所有元素
组成的集合,称为A与B的交集.记作:A?B. 3、全集、补集?CUA?{x|x?U,且x?U} §1.2.1、函数的概念
1、 设A、B是非空的数集,如果按照某种确定的对应
关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f?x?和它对应,那么就称f:A?B为集合A到集合B的一个函数,记作:y?f?x?,x?A.
2、 一个函数的构成要素为:定义域、对应关系、值
- 1 -
nx,都有f??x??f?x?,那么就称函数f?x?为
偶函数.偶函数图象关于y轴对称.
2、 一般地,如果对于函数f?x?的定义域内任意一个
x,都有f??x???f?x?,那么就称函数f?x?为
奇函数.奇函数图象关于原点对称. 第二章:基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算
1、 一般地,如果x?a,那么x叫做a 的n次方根。
其中n?1,n?N?. 2、 当n为奇数时,nan?a;
当n为偶数时,a?a. 3、 我们规定: ⑴anmnnnn?man
*?a?0,m,n?N,m?1;
?
⑵a?n?1?n?0?; anr?sn⑶logaM?nlogaM.
4、 运算性质: ⑴aa?ars?a?0,r,s?Q?;
0?a?1 2.51.55、换底公式:logab?logcb logca?a?0,a?1,c?0,c?1,b?0?.
图 -12.51.5a?1 106、重要公式:loganb?7、倒数关系:logab? mmlogab n10.50.5象 -0.51-10-0.51-1-1-1.5-1.5-21?a?0,a?1,b?0,b?1?.
logba-2.5 -2-2.5 (1)定义域:(0,+∞) §2..2.2、对数函数及其性质
1、记住图象:y?logax?a?0,a?1?
y=logax

