fc?1?1250Hz 16T
二、离散时间信号与系统频域分析
计算题: 1.设序列
x(n)的傅氏变换为X(ej?),试求下列序列的傅里叶变换。
x*(n)(共轭)
(1) (2)解:(1)x(2n) 由序列傅氏变换公式
x(2n) DTFT[x(n)]可以得到
DTFT
?X(e?j?)?n????x(n)e?jn???j?n
[x(2n)]??n????x(2n)e?n?为偶数?x(n?)e?j?n?2
?j?n1n2??[x(n)?(?1)x(n)]en???2?jn??j(??)n1?1?2??x(n)e??x(n)e2 2n???2n???jj(??)112?X(e)?X(e2)22??jj12?X(e)?X(?e2)2???(2)
x*(n)(共轭)
n???解:DTFTx*(n)???x*(n)e?jn??[?x(n)ejn?]*?X*(e?j?)
n????2.计算下列各信号的傅里叶变换。
1()nu[n?2]2u[?n] (b)4(a)
n1nn()?[4?2n] (d)2(c)
解:(a)
nX(?)??n????2u[?n]ennj??j?n?n????20e?j?n
??(2e?)n?01?1
11?ej?2?1n1n?j?n?j?nX(?)?()u[n?2]e?()e(b) ??44n???n??2?
1m?2j?(m?2)ej2???()e?161m?041?e?j?4?n????
(c)
X(?)??x[n]e??j?n?n?????[4?2n]e??j?n?e?j2?
?(d)X(?)?1n?j?n11()e?[??1] ?11n???21?e?j?1?ej?22利用频率微分特性,可得
?dX(?)X(?)??jd? 1j?11?j?1??e?e1j?2212(1?e)(1?e?j?)222jwx(n)的傅里叶变换为X(e),求下列各序列的傅里叶变换。
3.序列
*x(?n) (2)Re[x(n)] (3) nx(n)
(1)
??解: (1)
n?????x(?n)e*?jwn??n????[x(?n)e?jw(?n)]*?X*(ejw)
(2)
n????Re[x(n)]e??jwn??11??jwn[x(n)?x(n)]e?[X(ejw)?X?(e?jw)] ?2n???21dx(n)e?jwnd?dX(ejw)?jwn????j?x(n)e?j (3)?nx(n)e
jdwdwn???dwn???n???jwX(e),求下列各序列的傅里叶变换。 x(n)4.序列的傅里叶变换为
?jwn?2x(n)x(n) jIm[x(n)] (1) (2) (3)
解:(1) (2)
n????x(n)e???jwn?n????[x(n)e??j(?w)(?n)?]?[?x(n)e?j(?w)n]??X?(e?jw)
n?????11???jwn?jwn[x(n)?x(?n)]e?[?x(n)e??x?(n)e?jwn]?2n???n???2n????1?jw?????X(e)???x(n)e?j(?w)n?2??n?????? (3)
?????
1X(ejw)?X?(e?jw)2??n????x(n)e2??jwn?1???n????2???j(w??)n?X(e)d?x(n)e?????n?????j??1?j?j(w??) X(e)X(e)d????2?1?X(ej?)?X(ejw)2?jwjwX(e)X(e)表示下面各序列的傅立叶变换。 x(n)5.令和表示一个序列及其傅立叶变换,利用
?(1)
g(n)?x(2n)
?x?n2?n为偶数(2)g(n)??
0n为奇数?解:(1)G(ejw)?n?????g(n)e??jnw?n????x(2n)e??jnw?k???k为偶数?x(k)ek?k?jw2
?jw1??x(k)?(?1)kx(k)e2k???2???jk?jk1?1?j?22?x(k)e?x(k)(e)e??2k???2k???ww
j?jk(??)11?22?X(e)??x(k)e22k???wwjj(??)??11?X(e2)?X?e2?22??wwjj?1???X(e2)?X(?e2)?2??ww
(2)G(e6.设序列(1)
jw)?n????g(n)e
??jnw?r????g(2r)e??j2rw?r????jr2wj2wx(r)e?X(e) ??x(n)傅立叶变换为X(ejw),求下列序列的傅立叶变换。
x(n?n0)n0为任意实整数
?x?n2?n为偶数(2)g(n)??
0n为奇数?x(2n) (3)
)?e?jwn0
(2) x(n) n为偶数
2j2w) g(n)? ?X(e解:(1)X(ejw 0 n为奇数 (3)x(2n)
?X(ejw2)
7.计算下列各信号的傅立叶变换。
1()n?u(n?3)?u(n?2)?(1)2
18?n)?sin(2n)cos(7(2) ??cos(?n3)-1?n?4(3)x(n)??
?0其它??jkn1n【解】(1)X(k)??()?u(n?3)?u(n?2)?eN
n???2?2?1n?jNkn?1n?jNkn ??()e ??()en??32n?22 ??2?2?8ej32?kN2??jkN11?e2?14e?j22?kN2??jkN11?e22?
15?j5Nk2?1?()ej3k2 ?8eN 2??jk11?eN218?n)和sin(2n)的变换分别为X(k)和X(k),则 (2)假定cos(127?182?18?2??X1(k)?????(k???2k?)??(k???2k?)?
N7N7?k???????2?2??X2(k)????(k?2?2k?)??(k?2?2k?)?
jk????NN?所以 X(k)?X1(k)?X2(k)
42?182????jnNk?2?18? ????(k???2k?)??(k???2k?)?j?(k?2?2k?)?j?(k?2?2k?)(3)X(k)??cosne??7N7NN3?k????Nn??4?2?
?jn?jnk1j3n3N??(e?e)e n??424??2?
1j4(Nk?3)9j(3?Nk)n1j4(Nk?3)9j(3?N)n?ee?ee??22n?0n?02?2???2?2???2?
1j4(Nk?3)1?e1j4(Nk?3)1?e?e?e?2??2?
j(?k)j(?k)221?e3N1?e3N8.求下列序列的时域离散傅里叶变换
??2?j(?k)93N2???2?j(?k)93N
x?(?n), Re?x(n)?, x0(n)

