超声波传感器

2026/1/17 3:18:37

3.2 系统主要参数考虑

系统的主要参数有传感器的指向角、测距的工作频率、声速、脉冲宽度、测量盲区等,下面做介绍并阐述。 3.2.1 传感器的指向角θ

传感器的指向角是声束半功率点的夹角,是影响测距的一个重要技术参数,它直接影响测量的分辨率。对圆片传感器来说,它的大小与工作波长λ,传感器半径 r 有关。

由(2π/λ)*r*sin(θ/2)=1.615 (3-1)

选 f0=40KHz 时,λ=C/f0=8.5mm。当 f0选定后,指向角θ近似与传感器半径成反比。指向角θ愈小,空间分辨率愈高,则要求传感器半径 r 愈大。鉴于目前电子市场的压电传感片规格有限,为降低成本,在不降低空间分辨率的条件下,选用国产现有压电传感器片最大半径 r=6.3mm,故θ=2*arcsin(1.615λ/2*π*r)=75°。 3.2.2 测距仪的工作频率

由文献[5]知,空气中超声波的衰减系数为α=αaαs=Af2+Bf4。所以,空气中超声波的衰减对频率很敏感,要求合理选择超声波频率,一般在 40KHz 左右。太高频率的超声波在空气中是无法传播开去的。传感器的工作频率是测距系统的主要技术参数,它直接影响超声波的扩散和吸收损失,障碍物反射损失,背景噪声,并直接决定传感器的尺寸。

工作频率的确定主要基于以下几点考虑:

(1) 如果测距的能力要求很大,声波传播损失就相对增加,由于介质对声波的吸收与声波频率的平方成正比,为减小声波的传播损失,就必须降低工作频率。

(2) 工作频率越高,对相同尺寸的换能器来说,传感器的方向性越尖锐,测量障碍物复杂表面越准,而且波长短,尺寸分辨率高,“细节”容易辨识清楚,因此从测量复杂障碍物表面和测量精度来看,工作频率要求提高。

(3) 从传感器设计角度看,工作频率越低,传感器尺寸就越大,制造和安装就越困难。 综上所述,由于本测距仪最大测量量程不大,因而选择测距仪工作频率在 40KHz,定为

10

44KHz。这样传感器方向性尖锐,且避开了噪声,提高了信噪比;虽然传播损失相对低频有所增加,但不会给发射和接收带来困难。 3.2.3 声速

由公式(2-1),声速的精确程度线性的决定了测距系统的测量精度。传播介质中声波的传播速度随温度,杂质含量,和介质压力的变化而变化。声速随温度变化公式为

V=331.4+0.607T(m/s) (3-2)

式中,T 是温度。由于该测距系统用于室内测量,且量程也不大,温度可以看作定值。在常温下,声音在空气中的传播速度可依据上式计算出为 340 m/s。 3.2.4 发射脉冲宽度

发射脉冲宽度决定了测距仪的测量盲区,也影响测量精度,同时与信号的发射能量有关。根据资料,减小发射脉冲宽度,可以提高测量精度,减小测量盲区,但同时也减小了发射能量,对接收回波不利。但是根据实际的经验,过宽的脉冲宽度会增加测量盲区,对接收回波及比较电路都造成一定困难。

在具体设计中,比较了 24μs (1 个 40KHz 脉冲方波),120μs( 5 个 40KHz 脉冲方波),240μs (10 个 40KHz 脉冲方波),720μs( 30 个 40KHz 脉冲方波)的发射脉冲宽度作为发射信号后的接收信号,最终选用 120μs (5 个 40KHz 脉冲方波)的发射脉冲宽度。此时,从接收回波信号幅度和测量盲区两个方面来衡量比较适中。 3.2.5测量盲区

在以传感器脉冲反射方式工作的情况下,电压很高的发射电脉冲在激励传感器的同时也进入接收部分。此时,在短时间内放大器的放大倍数会降低,甚至没有放大作用,这种现象称为阻塞。不同的检测仪阻塞程度不一样。根据阻塞区内的缺陷回波高度对缺陷进行定量评价会使结果偏低,有时甚至不能发现障碍物,这是需要注意的。由于发射声脉冲自身有一定的宽度,加上放大器有阻塞问题,在靠近发射脉冲一段时间范围内,所要求发现的缺陷往往不能被发现,这段距离,称为盲区,具体分析如下:

11

当发射超声波时,发射信号虽然只维持一个极短时间,但停止施加发射信号后,探头上还存在一定余振(由于机械惯性作用)。因此,在一段较长时间内,加在接收放大器输入端的发射信号幅值仍具一定幅值高度,可以达到限幅电路的限幅电平 VM ;另一方面,接收探头上接收到的各种反射信号却远比发射信号小,即使是离探头较近的表面反射回来的信号,也达不到限幅电路的限幅电平。当反射面离探头愈来愈远,接收和发射信号相隔时间愈来愈长,其幅值也愈来愈小。在超声波检测中,接收信号的衰减总是比发射信号余振衰减慢的多。为保证一定的信噪比,接收信号幅值需达到规定的阈值 Vm ,亦即接收信号的幅值必须大于这一阈值才能使接受放大器有输入信号。

12

4 单片机倒车防撞报警系统各组成单元设计

该超声波测距系统由超声波发射与接收电路、单片机硬件接口电路、显示报警电路组成,下面主要通过各个模块的各种方案比较,确定设计的最终方案。该系统的核心部分采用性能较好的AT89C51单片机。

4.1 发射与接收电路的设计方案

超声波发射与接收电路是整个系统的重要部分,因此确定一种好的设计方案关系整个系统的精确性和安全可靠性。本文通过多种方案比较,以达到最佳方案确定。

设计方案一:

由施密特振荡器和数字功放电路组成,由P1.0口发出的同步脉冲信号如图4.1。它启动振荡器,输出40KHz的高频信号,经整形及功放电路,加至发射换能器,发出40kHz的超声波。

接收电路主要由回波放大接收及比较控制电路组成,如图4.1所示。

图4.1 接收控制及接口电路

初始,比较器A1同相端已经通过调整Rr,使其电压略高于2.5V。因此A1应输出高电平,但由于D1相位作用,A1输出低电平,即RS触发器的S=0,Q=1,R =1,INT0= 0。当

13


超声波传感器.doc 将本文的Word文档下载到电脑
搜索更多关于: 超声波传感器 的文档
相关推荐
相关阅读
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 10

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219