STATA简单命令

2025/5/20 11:39:35

STATA的简单命令

Stata中最重要的命令莫过于help和search了。 help用于查找精确的命令,而search是模糊查找。 例如:help regress

又如:我们记不清regress命令的全名,只记得regress的前半部分reg, 那么可以输入search reg

用户获得信息最有效的另一个途径是使用Statalist在线论坛,该论坛提供Stata用户交流的一个良好的平台。要加入Statalist,我们可以给以下地址发个邮件: majordomo@hsphsun2.harvard.edu 邮件的内容为:subscribe Statalist

变量的命名:

1. 变量名可达32个字符。

2. 字符组成部分为A~Z、a~z、0~9与下划线“_”,这些字符以外的其他符号不可以出现

在变量名中。

3. 变量名不能以数字开头。 4. 变量名区分大小写。

5. 倘若遵循以上原则依然无法正常命名变量,那么这个变量可能与Stata自身保留的供系

统使用的变量重复了。

创建数据文件的方法: 1. 手动输入。

2. 从excel等文件中复制粘贴到stata数据表中。 3. 运用stata软件导入。

查看数据的概貌: summarize x codebook x

如果上面两个命令后面不加内容,那么显示的结果是所有变量的概貌。

对数据进行排序的命令:sort 标准1 标准2 标准3

生成数据的命令:gen

1. 如果要得到一阶差分,可以用以下命令:gen Difference_invest(新变量的名称是任意的)

=d.invest(d.是运算符号,不得改变;invest是变量名称)

2. 要想产生一个新的变量Lag_invest,也就是invest的一阶滞后,那么我们可以采用如下

命令:gen Lag_invest = l.invest

3. 生成对数的命令:gen Ln_invest=ln(invest)

1 / 19

作散点图的命令:scatter

1. scatter x1 x2:scatter后的第一个变量是纵轴的变量,第二个变量是横轴的变量。 2. scatter x1 x2, connect(1):以直线的方式连接相邻的两个点。

3. scatter x1 x2, connect(1) msymbol(i):散点的显示方式为“看不见”。

相关性检验:

回归方程的斜率系数在一定程度上也是反映两个变量之间关系的密切程度,斜率系数的平方根就是相关系数。 1. pwcorr命令(用于计算Pearson相关系数),它的好处是尽可能使用两两变量中所有没有

缺失的数据,而不像correlate只采用没有任何缺失数据的完整的观测值。

pwcorr [varlist], sig star(.1):star(.1)是为了对显著性超过0.1的相关系数打上星号 pwcorr [varlist], sig print (.1):print (.1)则是仅仅显示这些显著的相关系数

2. spearman命令(用于计算Spearman相关系数)。

截面数据的估计命令

如何创建一个截面数据文件?只需要从excle中拷贝相应的数据到stata中即可,不需要特别的命令说明它是截面数据。

截面数据的回归主要需要注意以下几点:多重共线性(当样本量较小时,例如小于100)和异方差。而且需要考察t统计值、R2(adj-R2)、F统计量。

1. 检验自变量的相关性。(第1步也可以暂时不做,等到回归结束以后再做)

pwcorr [varlist], sig print(.05) 2. 对模型进行回归。

一个普通的回归命令:reg y x1 x2 x3 x4 x5, robust(截面数据一律加上robust) 倘若回归结果的经济学含义不合理(包括系数的正负号和显著性水平),而且前面的相关性检验中自变量的相关性十分高,那么有可能存在严重的多重共线性,为了精确起见,可以用vif来判断多重共线性是否严重(当vif的最大值大于10,同时各vif的平均值大于1时,表明多重共线性比较严重。使用vif命令时一定要在回归命令执行以后再用)。如何处理多重共线性?剔除变量法、逐步回归法以及增加样本容量。 3. 运用剔除变量法进行回归。 4. 运用逐步回归法进行回归。

逐步回归命令:

sw reg y x1 x2 x3 x4 x5, pr(.1):逐步回归,从最不显著的变量开始删除,直到所有变量在设定水平下(0.1)显著。

sw reg y x1 x2 x3 x4 x5, pr(.1) lockterm1:逐步回归,从最不显著的变量开始删除,直到所有变量在设定水平下(0.1)显著;而且加入lockterm项,为了保证第一项自变量不被删除。

sw reg y x1 x2 x3 (x4 x5), pr(.1):逐步回归,从最不显著的变量开始删除,直到所有变量在设定水平下(0.1)显著;而且加入()项,为了保证x4和x5要么同时出现,要么同时不出现。

2 / 19

3 / 19

时间序列数据的估计命令

如何创建一个截面数据文件?先把数据转移到stata中,然后用tsset命令。 tsset time, yearly(或者weekly、monthly、quarterly)

此时,一定要保证表示时间的那一列数据(即年份)的名称为time。

时间序列数据的回归主要需要注意以下几点:多重共线性(当样本量较小时,例如小于100)和序列相关性。而且需要考察t统计值、R2(adj-R2)、F统计量、D.W.值。

首先用reg命令进行回归,例如:reg y x1 x2 x3 x4 x5,并考察D.W.值(使用estat dwatson这一命令),如果D.W.值严重远离2,那么要进行调整(调整方法如黄色底纹),直到调整到2附近,然后考察回归结果是否符合经济学含义,倘若不符合,那么要注意是否受到多重共线性的影响(通过相关系数和vif值来判断)。在处理多重共线性时,可以用类似于处理截面数据的方法(剔除变量法),同时还要看D.W.值。此外,还可以用差分法来处理多重共线性(此方法用得不多)。

检验DW值的命令:estat dwatson

用广义差分法考虑序列相关性的命令(即调整DW值的命令): reg y x1 x2 x3 x4 x5 L.y(后面还可以运用L.y L2.y)

用序列相关稳健标准误法考虑序列相关性的命令(即调整DW值的命令): reg y x1 x2 x3 x4 x5, robust

考虑多重共线性的方法除了以上截面数据中用到的方法以外,还可以用差分法,然后再看vif值。

reg D.y D.x1 D.x2 D.x3 D.x4 D.x5

面板数据的估计命令

如何创建一个面板数据文件? 录入数据 xtset id year

面板数据的回归主要需要注意:多重共线性(当样本量较小时),异方差和序列相关性在很

2

多研究中可以不必深究。而且需要考察t统计值、R(adj-R2)、F统计量,选择固定效应(fixed effect)或随机效应(random effect)。

多重共线性的处理方法可以参照截面数据和时间序列数据的处理方法。

固定效应和随机效应的选择:(xtreg后面紧挨着的变量是被解释变量,然后接下来才是解释变量)

xtreg 被解释变量解释变量, fe est store fe

4 / 19


STATA简单命令.doc 将本文的Word文档下载到电脑
搜索更多关于: STATA简单命令 的文档
相关推荐
相关阅读
× 快捷下载通道(下载后可以自由复制和排版)

开通会员免费下载

开通会员后百万份文档资料免费自由复制和下载,是您最优的选择,赶快来试试吧!

单篇下载:10元 点击下载

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219