陈纪修教授《数学分析》九讲学习笔记与心得

2026/1/23 7:11:22

陈教授分析了为何在Weierstrass之前的数学家不能构造出这样的函数。原来在此之前,数学家们所掌握的函数是不足以构造出这样的函数的。

Weierstrass在1872年构造出了如下处处连续处处不可导的函数:

?ansin(bnx) 01

陈教授选用1930年Van Der Waerden给出的例子进行了剖析。所讲自是精当,本人很是受益。

第七讲 条件极值问题与Lagrange乘数法

本讲陈教授从一个几何问题入手,得到一个条件极值问题。考虑了条件极值的必要条件,引入Lagrange乘数法,化条件极值问题为无极条件极值问题。这部分内容中,本人认为几何解释最有启发性。

对于具体使用Lagrange乘数法的例子中,如何解方程组,陈教授给了很好的建议。第二个例子,即求平面x+y+z=0与椭球面x2+y2+4z2=1相交而成的椭圆面积。这个例子我很喜欢,只可惜不能用来做期末考题(不要问我为什么!)。

第八讲 重积分的变量代换

本讲陈教授从定积分的换元的计算公式分析入手,对二重积分的相应的代换公式作出类比猜想(在教学中注重渗透数学思想方法,如此妙哉!)再作分析,然后得出代换公式。

为证明代换公式,陈教授引入本原映射,化“矩形”为“梯形”,化变换T为两个本原变换的复合,实现了化复杂为简单,化困难为容易。

第九讲 《数学分析》课程中的否定命题

《数学分析》教学中,说说“反话”很重要!(请不要误解!)

两个命题A与B如果既不能同时成立,也不能同时不成立,就称A与B互为否定命题。 若A与B互为否定命题,则A与B一定满足:一个成立,另一个必然不成立;一个不成立,另一个必定成立。(废话!)

有界与无界、收敛于a与不收敛于a、收敛与不收敛、(注意前边两对的区别!)、可导与不可导、Cauchy收敛准则及其否定命题,等等。这些“反话”不说,大量的题做不了。

我在讲《数学分析》(1)时会有一讲(几个概念的否定叙述)就是来讲否定命题的。 陈教授在这部分的例子非常好,分析得也清楚!

陈教授的九讲,给了我们太多的启示:

一、在我们的教学中,不仅要教其所以然,而且要教其所以然。陈教授的这九讲,应该是我

们讲授《数学分析》的经典案例,当然,我们不一定是讲这一些内容!正确的思想从哪里来,是从天上掉下来的吗?不是!

二、在我们的教学,不仅要传授知识,而且要传授思想方法,也就是教学中要注

重思想方法的渗透。

三、在我们的教学中,不仅要传授知识,而且要培养学生的数学素养,让他们了解数学的过

去、现在,以便开创数学的将来。

四、在我们的教学中,或许会遇的许多困难:教学时数少,教学对象差等等,但我们应从我

们自身积极的寻找对策。陈教授就是这样的。

以上所述,仅凭个人听课记录,又仅凭个人理解。若是有误,请陈教授见谅并斧正。 最后,向陈纪修教授致以崇高的敬意!

滇源后学:周兴伟


陈纪修教授《数学分析》九讲学习笔记与心得.doc 将本文的Word文档下载到电脑
搜索更多关于: 陈纪修教授《数学分析》九讲学习笔记与心得 的文档
相关推荐
相关阅读
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 10

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219