关于matlab矩阵分解

2026/1/23 2:13:13

(1) LU分解

A是非奇异的,LU分解总是可以进行的。

[L,U]=lu(X):产生一个上三角阵U和一个变换形式的下三角阵L(行交换),矩阵X必须是方阵。

[L,U,P]=lu(X):产生一个上三角阵U和一个下三角阵L以及一个置换矩阵P,使之满足PX=LU。矩阵X必须是方阵。 实现LU分解后,线性方程组Ax=b的解x=U\\(L\\b)或x=U\\(L\\Pb),这样可以大大提高运算速度。

例7-2 用LU分解求解例7-1中的线性方程组。 命令如下:

A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; [L,U]=lu(A); x=U\\(L\\b)

或采用LU分解的第2种格式,命令如下: [L,U ,P]=lu(A); x=U\\(L\\P*b)

(2) QR分解

对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一个上三角矩阵R的乘积形式。QR分解只能对方阵进行。MATLAB的函数qr可用于对矩阵进

行QR分解,其调用格式为:

[Q,R]=qr(X):产生一个一个正交矩阵Q和一个上三角矩阵R,使之满足X=QR。 [Q,R,E]=qr(X):产生一个一个正交矩阵Q、一个上三角矩阵R以及一个置换矩阵E,使之满足XE=QR。

实现QR分解后,线性方程组Ax=b的解x=R\\(Q\\b)或x=E(R\\(Q\\b))。

例7-3 用QR分解求解例7-1中的线性方程组。 命令如下:

A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; [Q,R]=qr(A); x=R\\(Q\\b)

或采用QR分解的第2种格式,命令如下: [Q,R,E]=qr(A); x=E*(R\\(Q\\b))

(3) Cholesky分解

如果矩阵X是对称正定的,则Cholesky分解将矩阵X分解成一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为R,则下三角矩阵为其转置,

即X=R'R。MATLAB函数chol(X)用于对矩阵X进行Cholesky分解,其调用格式为:

R=chol(X):产生一个上三角阵R,使R'R=X。若X为非对称正定,则输出一个出错信息。

[R,p]=chol(X):这个命令格式将不输出出错信息。当X为对称正定的,则p=0,R与上述格式得到的结果相同;否则p为一个正整数。如果X为满

秩矩阵,则R为一个阶数为q=p-1的上三角阵,且满足R'R=X(1:q,1:q)。 实现Cholesky分解后,线性方程组Ax=b变成R‘Rx=b,所以x=R\\(R’\\b)。

例7-4 用Cholesky分解求解例7-1中的线性方程组。 命令如下:

A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; R=chol(A)

??? Error using ==> chol

Matrix must be positive definite

命令执行时,出现错误信息,说明A为非正定矩阵。


关于matlab矩阵分解.doc 将本文的Word文档下载到电脑
搜索更多关于: 关于matlab矩阵分解 的文档
相关推荐
相关阅读
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 10

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219