4.(2014?舟山)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫
2
升)与时间x(时)的关系可近似地用二次函数y=﹣200x+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示). (1)根据上述数学模型计算:
①喝酒后几时血液中的酒精含量达到最大值?最大值为多少? ②当x=5时,y=45,求k的值.
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.(二次函数的应用;反比例函数的应用)
5.(潍坊市)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)
的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为O千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.
(1)求大桥上车流密度为100辆/千米时的车流速度.
(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时时,应控制大桥上的车流密度在什么范围内?
(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.(二次函数的应用;一次函数的应用)
6. (2012安徽省)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成
2
点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m。
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围) (2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由; (3)若球一定能越过球网,又不出边界,求h的取值范围。(二次函数的性质和应用)。
7. (2012湖北武汉)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和 矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的 距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.
(1)求抛物线的解析式;
(2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数 关系h=?1需禁止船只通行,请通过计算说(t?19)2+8(0?t?40)且当水面到顶点C的距离不大于5m时,
128明:在这一时段内,需多少小时禁止船只通行?(二次函数的应用,待定系数法,曲线上点的坐标与方程的关系)

