关于数学悖论的探讨
摘要:中西方哲学界和数学界对悖论问题的研究已经持续了长达几十年,这个问题牵涉到逻辑和哲学。具体说来,它还同多种数理逻辑上的实际问题有关。因此,,对于悖论的研究不仅有着哲学上的意义,对于数学逻辑的养成以及解决实际问题上也有着深远的意义。许多悖论到如今依旧没有在这篇论文中我希望通过阐述几个世界上较为知名的悖论,并且通过自己的分析得出结论来谈一谈我对悖论的理解。 关键字:悖论 罗素悖论 说谎者悖论 芝诺悖论 逻辑 正文:
一. 悖论的基本概念
悖论指在逻辑上可以推导出互相矛盾之结论,但表面上又能自圆其说的命题或理论体系。悖论的出现往往是因为人们对某些概念的理解认识不够深刻正确。 悖论的成因极为复杂且深刻,但深入研究有助于数学、逻辑学、语义学、形而上学等等理论学科的发展,因此具有重要意义。其中最经典的悖论包括罗素悖论、说谎者悖论、康托尔悖论等等。悖论,亦称为吊诡、诡局或佯谬,是指一种导致矛盾的命题。在逻辑学上指可以同时推导或证明出两个互相矛盾的命题的理论体系或命题。 二. 悖论的主要形式
悖论的主要形式有以下三种。
1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。
2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。
3.一系列推理看起来好像无法打破,可是却导致逻辑上自相矛盾。 三.悖论的分类
悖论可大致分为三类:逻辑悖论、概率悖论、几何悖论、统计悖论和时间悖论。
时间悖论通常是指因时间旅行或穿梭时空而导致的逻辑上可以推导出互相矛盾的结论,同时假定两个或更多不能同时成立的前提,是一切悖论问题的共同特征。
逻辑悖论总是相对于一个公理系统而言的,如果在一个公理系统中既可以证明公式A又可以证明A的否定元A',则我们说在这个公理系统 中含有一个悖论,因为这时A和A'在系统中是可证等价的。
统计悖论可追溯到18世纪,它是一个非传递关系的典型,这种关系是在人们作两两对比选择时可能产生的。人们也许已经很熟悉传递关系的概念。它适用于诸如“高于”、“大于”、“小于”、“等于”、“先于”、“重于”等关系。一般讲,如果有一个关系R使得xRy(即x对y是R关系)、yRz成立时,则xRz成立,这时R就是可传递关系。
几何悖论所构造的图案是仅存在于2维平面世界里的图形,是一种通过素描,线描等立体绘画手法表现出3维立体世界中不可能存在的图像。例如“不可能台阶”是由英国遗传
学家列昂尼尔·S·彭罗斯和他的儿子,数学家罗杰尔·彭罗斯发明的,后者于1958年把它公布于众,人们常称这台阶为“彭罗斯台阶”。
概率悖论出自法国数学家莫里斯·克莱特契克,在他的《数学消遣》书中写道: “有两个人都声称他的领带好一些。他们叫来了第三个人,让他作出裁决到底谁的好。胜者必须拿出他的领带给败者作为安慰。两个争执者都这样想:我知道我的领带值多少。我也许会失去它,可是我也可能赢得一条更好的领带,所以这种比赛是对我有利。一个比赛怎么会对双方都有利呢?” 四. 经典悖论的分析 (1) 理发师悖论
悖论阐述:在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
分析:理发师悖论等同于经典的罗素悖论。他将城市里所有人每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是城里不属于自身的那些集合,并且城里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论,即设性质P(x)表示“x不属于x”,现假设由性质P确定了一个类A——也就是说“A={x|x?x}”。那么问题是:A属于A是否成立?首先,若A属于A,则A是A的元素,那么A具有性质P,由性质P知A不属于A;其次,若A不属于 A,也就是说A具有性质P,而A是由所有具有性质P的类组成的,所以A属于A。
那么如何解决罗素悖论呢?诸多数学家都提出了自己的理论1908年,策梅罗在自
己这一原则基础上提出第一个公理化集合论体系,后来这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。这一公理系统在通过弗兰克尔的改进后被称为ZF公理系统。在该公理系统中,由于分类公理:P(x)是x的一个性质,对任意已知集合A,存在一个集合B使得对所有元素x∈B当且仅当x∈A且P(x);因此{x∣x是一个集合}并不能在该系统中写成一个集合,由于它并不是任何已知集合的子集;并且通过该公理,存在集合A={x∣x是一个集合}在ZF系统中能被证明是矛盾的,因此罗素悖论在该系统中被避免了。
除ZF系统外,集合论的公理系统还有多种,如冯·诺伊曼(von Neumann)等人提出的NBG系统等。在该公理系统中,所有包含集合的\都能被称为类(class),凡是集合也能被称为类,但是某些 collection太大了(比如一个collection包含所有集合)以至于不能是一个集合,因此只能是个类。这同样也避免了罗素悖论。 结论:罗素悖论的提出证明了康托尔的集合论是有问题的,所以需要更加严谨的吉和理论来定义集合。
(2) 说谎者悖论 悖论阐述:西元前6世纪,克利特哲学家埃庇米尼得斯(Epimenides)说了一句很有名的话:“所有克利特人都说谎。”
分析:这句话有名是因为它没有答案。因为如果埃庇米尼得斯说的是真的,但这跟先前假设这话为真相矛盾;又假设此言为假,那么也就是说不是所有克利特人都说谎,自己也是克利特人的埃庇米尼得斯就不一定是在说谎,就是说这句话可能是真的,但如果这句话是真的,又会产生矛盾。因此这句话是没有解释的。
我们可以将说谎者悖论简化为“这句话为假”们可以有以下分析:
(1)“这语句是假”是真(2)这语句是假(3)“这语句是假”是假(4)这语句是假,这是假
既然如此,当人们在用“‘这语句是假’” 代换“这语句”从而从(2)推出(3)时,就不自觉地犯了一个逻辑错误。因为“‘这语句’”是语句(2)的名称;这意谓着,通过代换,(2)由对“这语句”的否定,变成对“‘这语句是假’”的否定,从而由(2)产生了其矛盾句(3)。其原因是明确的,在一个断定某语句真值的语句中,我们不可用与之相矛盾的表达式代换其主词,否则的话必然产生与原语句相矛盾的另一个语句。这可以说是逻辑学中的一条简单的规律。比如,如果我们用-X代换“X是真”中的主词,得:-x是真,即X是假;等等。当人们用“‘这语句是假’”代换“这语句”从而由(2)推出(3)时,就违反了这条规律。在这里,矛盾的产生是合乎逻辑的,而矛盾的来源显然是约定A的自相矛盾性被代入该推导之中的结果。事实上违反该规律本是一个逻辑学中的低级错误;说谎者悖论的推导实质上就犯了同样的错误。只是自然语言的某种机缘,才将其牢牢地掩盖住了。
结论:自然语言在数学表达时会有一定的错误,所以数学表达时更加合适的是符号语言。 (3) 芝诺悖论
悖论阐述:芝诺:“一个人从A点走到B点,要先走完路程的1/2,再走完剩下总路程的1/2,再走完剩下的1/2??”如此循环下去,永远不能到终点。
形象的我们可以用一个追乌龟的例子。阿基里斯是古希腊神话中善跑的英雄。在他和乌龟的竞赛中,他速度为乌龟十倍,乌龟在前面100米跑,他在后面追,但他不可能追上乌龟。因为在竞赛中,追者首先必须到达被追者的出发点,当阿基里斯追到100米时,乌龟已经又向前爬了10米,于是,一个新的起点产生了;阿基里斯必须继续追,而当他追到乌龟爬的这10米时,乌龟又已经向前爬了1米,阿基里斯只能再追向那个1米。就这样,乌龟会制造出无穷个起点,它总能在起点与自己之间制造出一个距离,不管这个距离有多小,但只要乌龟不停地奋力向前爬,阿基里斯就永远也追不上乌龟
分析:从一定程度上来说,芝诺悖论对“运动”的真是新提出了质疑。但是,我们不难发现,芝诺在他提出的悖论中犯了两个非常严重的错误,第一他将时间和空间看做是不连续的。亚里士多德认为时间并不等同于线,竹竿等等,时间的的每个瞬间是不可分的,是由无限个前一瞬间和后一瞬间绵延组成的,而物体在空间的状态也是和时间一一对应的。可以说,芝诺是将每一个非常短的时间看做了0,在0的时间内物体的确是静止的,但是时间的长度不可能是0.从高等数学中的微分与积分的概念中我们也可以得到类似的结论
结论:对于任何的分析,运动本身是第一位的,而运动轨迹是第二位的;物理经验是第一位的,而数学描述是第二位的;物理事件是第一位的,而时空结构是第二位的。对运动轨迹的分析引出了数学和逻辑上的许多问题,即使这些问题最终能够解决,也不意味着最终解决了运动问题本身。运动更为基本而且不可分析,它超出了理论理性。
参考文献 《 悖论研究八十年》杨熙龄 《关于外部世界的知识》罗素 《芝诺悖论今昔谈》北京大学哲学 《物理学》亚里士多德 《数学原理》罗素

