模块高考热点透视

2026/1/27 5:47:09

所以平面PDAQ⊥平面ABCD,交线为AD. 又四边形ABCD为正方形,DC⊥AD, 所以DC⊥平面PDAQ,可得PQ⊥DC. 在直角梯形PDAQ中可得DQ=PQ=2PD,则PQ⊥QD. 2

又DQ∩DC=D,所以PQ⊥平面DCQ. (2)设AB=a.

由题设知AQ为棱锥Q-ABCD的高, 1

所以棱锥Q-ABCD的体积V1=a3.

3由(1)知PQ为棱锥P-DCQ的高, 而PQ=2a,△DCQ的面积为

22

a, 2

1

所以棱锥P-DCQ的体积V2=a3.

3

故棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值为1.

22.(本小题满分12分)(2014·南京高一检测)已知圆C:x2+y2-2x+4y-4=0,问是否存在斜率为1的直线l,使l被圆C截得弦AB,且以AB为直径的圆经过原点O?若存在,求出直线l的方程;若不存在,说明理由.

【解】 设直线l的方程为y=x+b, ?y=x+b,则?2 ?x+y2-2x+4y-4=0,

消元得2x2+(2b+2)x+b2+4b-4=0.

设此方程两根为x1,x2,则A(x1,y1),B(x2,y2). 则x1+x2=-(b+1), b2+4b-4x1x2=.

2

∵以AB为直径的圆过原点O, y1y2

∴kOA·kOB=·=-1.

x1x2∴x1x2+y1y2=0,

∴x1x2+(x1+b)(x2+b)=0, 即2x1x2+b(x1+x2)+b2=0, ∴b2+3b-4=0,

∴b=-4或b=1.又Δ=(2b+2)2-8(b2+4b-4),经检验当b=-4或b=1时满足Δ>0. ∴存在这样的直线为y=x-4或y=x+1.


模块高考热点透视.doc 将本文的Word文档下载到电脑
搜索更多关于: 模块高考热点透视 的文档
相关推荐
相关阅读
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 10

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219