即可得证;
(3)阴影部分的面积由三角形BOD的面积+三角形ECO的面积﹣扇形DOF的面积﹣扇形EOG的面积,求出即可.
【解答】解:(1)∵AB与圆O相切, ∴OD⊥AB,
在Rt△BDO中,BD=2,tan∠BOD=∴OD=3;
=,
(2)连接OE, ∵AE=OD=3,AE∥OD,
∴四边形AEOD为平行四边形, ∴AD∥EO, ∵DA⊥AE, ∴OE⊥AC,
又∵OE为圆的半径, ∴AE为圆O的切线;
(3)∵OD∥AC, ∴
=
,即
=
,
∴AC=7.5,
∴EC=AC﹣AE=7.5﹣3=4.5,
∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG =×2×3+×3×4.5﹣=3+=
﹣.
第21页(共29页)
【点评】此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.
23.如图,等腰梯形ABCD中,AD∥BC,∠B=45°,P是BC边上一点,△PAD的面积为,设AB=x,AD=y
(1)求y与x的函数关系式;
(2)若∠APD=45°,当y=1时,求PB?PC的值; (3)若∠APD=90°,求y的最小值.
【考点】SO:相似形综合题.
【专题】15:综合题;16:压轴题.
【分析】(1)如图1,过A作AE垂直于BC,在直角三角形ABE中,由∠B=45°,AB=x,利用锐角三角函数定义表示出AE,三角形PAD的面积以AD为底,AE为高,利用三角形面积公式表示出,根据已知的面积即可列出y与x的函数关系式;
(2)根据∠APC=∠APD+∠CPD,以及∠APC为三角形ABP的外角,利用外角性质得到关系式,等量代换得到∠BAP=∠CPD,再由四边形ABCD为等腰梯形,得到一对底角相等及AB=CD,可得出三角形ABP与三角形PDC相似,由相似得比例,将CD换为AB,由y的值求出x的值,即为AB的值,即可求出PB?PC的值;
(3)取AD的中点F,过P作PH垂直于AD,由直角三角形PF大于等于PH,当PF=PH时,PF最小,此时F与H重合,由三角形APD为直角三角形,利用直角三角形斜边上的中线等于斜边的一半得到PF等于AD的一半,表示出PF即为PH,三角形APD面积以AD为底,PH为高,利用三角形面积公式表示出三角形APD面积,由已知的面积求出y的值,即为最小值. 【解答】解:(1)如图1,过A作AE⊥BC于点E,
第22页(共29页)
在Rt△ABE中,∠B=45°,AB=x, ∴AE=AB?sinB=
x,
∵S△APD=AD?AE=, ∴?y?则y=
x=, ;
(2)∵∠APC=∠APD+∠CPD=∠B+∠BAP,∠APD=∠B=45°, ∴∠BAP=∠CPD,
∵四边形ABCD为等腰梯形, ∴∠B=∠C, ∴△ABP∽△PCD, ∴
=
,
∴PB?PC=AB?DC=AB2, 当y=1时,x=则PB?PC=(
,即AB=)2=2;
,
(3)如图2,取AD的中点F,连接PF, 过P作PH⊥AD,可得PF≥PH, 当PF=PH时,PF有最小值, 又∵∠APD=90°, ∴PF=AD=y, ∴PH=y,
∵S△APD=?AD?PH=, ∴?y?y≥,即y2≥2, ∵y>0,
∴当取“=“时,y取最小值
,
第23页(共29页)
则y的最小值为.
【点评】此题考查了相似形综合题,涉及的知识有:等腰梯形的性质,相似三角形的判定与性质,直角三角形斜边上的中线性质,以及三角形的面积求法,熟练掌握相似三角形的判定与性质是解本题的关键.
24.如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=﹣x+3的图象与y轴、x轴的交点,点B在二次函数y=x2+bx+c的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.
(1)试求b、c的值,并写出该二次函数表达式;
(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问: ①当P运动到何处时,有PQ⊥AC?
②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?
【考点】HF:二次函数综合题.
【专题】16:压轴题.
【分析】(1)根据一次函数解析式求出点A、点C坐标,再由△ABC是等腰三角形可求出点B坐标,根据平行四边形的性性质求出点D坐标,利用待定系数法可求出b、c的值,继而得出二次函数表达式.
(2)①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,再由△APQ∽△CAO,利
第24页(共29页)