(1)整体式设计
改向压轮的整体设计方案,如图3-9所示。
这样设计的优点是;一体连接,两端受力均匀,易于安装。 缺点是:较分体式质量大,不能调整两轮间距,要求对中精度高
图3-9 整体式改向压轮设计方案
(2)分体式设计
改向压轮的分体式设计方案,如图3-10所示。
其优点是:结构简单,便于安装,且方便调整间距,损坏一个更换一个,相对于一轴连接的而不必整体更换。
缺点是:压紧力不好控制,可以出现两端受力不均匀的现象。 综上所述,两者相比,分体式设计方案更为合理,故本设计采用分体式改向压轮。
41
图3-10分体式改向压轮设计方案
3. 输送带的跑偏处置
输送带运行时,可能由于拉力不足、物料偏心堆积,机架变形、托辊轴承缺陷、安装不对中、接头歪斜、拉力分布不均等,引起输送带跑偏。生产实践证明,机头、机尾不平行时输送带跑紧边不跑松边;安装不平时,跑高处不跑低处;安装下托辊不垂直时输送带跑后不跑前。一般以托辊的稳定系数来衡量跑偏纠正的能力。
一般来说,输送带的跑偏范围不太大,可利用托辊进行调整。可以用托辊进行调整的方法有槽形调偏托辊、侧托辊、两节式“V”形托辊、螺旋侧托辊等托辊组自动调节方法。
本次设计的食品提升皮带机属于小型食品输送机,输送的物料是很轻的糖果,利用以上方法不但会使结构变得复杂,而且会增加设计的成本,降低效率。因此,经过比较选择采用将改向压轮与防跑偏设计相结合的方法,如图3-11所示。
这种设计的工作原理是当输送带传递转矩出现跑偏现象时,改向压轮的轮槽与输送带边缘凸台相配合,控制输送带在运输过程中的窜动,防止输送带跑偏。
42
图3-11 改向压轮防跑偏设计图
4. 拉紧装置
张紧装置是带式输送机的重要组成部分。它的作用是保证输送带有足够的张紧力、补偿输送带的弹性伸长、为输送带重新连接作必要的行程准备等。
随着运输能力的提高及巷道的延伸,长运距大功率带式输送机对张紧装置提出了更高的要求。重锤式、固定式等机械张紧装置已难以适应要求。可调张力、实时监控、响应快、安全可靠的自动张紧装置便应运而生。
输送带是橡胶和纤维织品两者复合而成的产品。垂锤拉紧装置在运行一段时间后自动下降一段距离,使输送带变长,这说明输送带发生了蠕变,在启动、制动过程中也会发生蠕变现象,此时拉紧装置就必须进一步收紧才不会发生打没现象。
由此可见,拉紧装置是保证带式输送机正常运转不可少的重要部件,它的功能如下。
(1)输送带在传动滚筒上形成压力,靠摩擦力将传动滚筒的圆周力传递出来。
(2)控制输送带在托辊间的垂度,防止输送带在托辊间距内过分松弛而丧失槽形,引起物料和输送带跑偏,增加运行阻力。
(3)补偿输送带的弹性伸长,时间长了输送带会自动伸长,而且在过度工况下发生永久伸长。同时在启运、制动时输送带自动收紧,可免除机组振动。
(4)为重连接头提代必要的行程。
(5)在长距离带式输送机中,拉紧装置对其拉力产生重大影响。 拉紧装置可分为固定拉紧装置和自动拉紧装置两大类:
43
1)固定拉紧装置 固定拉紧装置分重力拉紧装置和刚性拉紧装置。重锤式、水箱式都属于重力拉紧装置,重力拉紧装置始终使输送带初拉力保持恒定,在启动、制动时会产生上下振动,但惯性力很快消失。刚性拉紧装置有螺旋拉紧、手动或电动拉紧装置等几种,它们的拉紧力是固定不变的,不能自动调整,在安装后,拉紧一次可运行一段时间,但还要收紧一次,以消除蠕变。固定拉紧装置的类型如下:
①螺旋式张紧装置 螺旋式张紧装置利用人力旋转螺杆来调节输送带的张力,它的结构简单紧凑,但张紧力大小不易掌握,工作过程中,张紧力不能保持恒定。
②小车重锤式张紧装置 小车重锤式张紧装置是把紧滚筒装置在一个可尾架上移动的小车上,由重锤通过滑轮拉紧小车,它的结构也较简单,可保持恒定的张紧力。其大小决宇重锤的重量,小车重锤式张紧装置外形尺寸大,占地多,质量大,适用于长度、功率较大的输送机,尤其是在倾斜输送机上。
③垂直重锤式张紧装置 垂直重锤式张紧装置可利用输送机走廊下面的空间位置,并分布在下分支胶带张力最小的地方,因而可减轻重锤的质量。其缺点是要增加改向滚轮的数目,增加输送带的弯曲次数,而且物料易掉入输送带与滚筒之间而损伤输送带。
2)自动拉紧装置 带式输送机是恒定转矩的,因此输送带拉力是固定的,自动测力拉紧装置以拉紧力为反馈信号随时间变化设定拉力,进行比较,并随时间调整装置的改向滚筒位移。如启动时会自动加大拉紧力,运转时恢复恒定拉力,对延长输送带寿命十分有利。
自动拉紧装置有两种形式:电动式和液压式
因本设计为轻载糖果皮带机,且带型为同步齿型带,无打滑现象,故考虑到结构及成本问题,可不采用拉紧装置。
3.5 托辊的设计
托辊是皮带机的重要部件,种类多,数量大。托辊占了一台皮带机总成本的35%,承受70%以上的阻力,历此托辊的质量尤为重要。
44

