%一维输入,一维输出,逼近效果很好!
1.基于聚类的RBF 网设计算法 SamNum = 100; % 总样本数
TestSamNum = 101; % 测试样本数 InDim = 1; % 样本输入维数
ClusterNum = 10; % 隐节点数,即聚类样本数 Overlap = 1.0; % 隐节点重叠系数
% 根据目标函数获得样本输入输出 rand('state',sum(100*clock)) NoiseVar = 0.1;
Noise = NoiseVar*randn(1,SamNum); SamIn = 8*rand(1,SamNum)-4;
SamOutNoNoise = 1.1*(1-SamIn+2*SamIn.^2).*exp(-SamIn.^2/2); SamOut = SamOutNoNoise + Noise;
TestSamIn = -4:0.08:4;
TestSamOut = 1.1*(1-TestSamIn+2*TestSamIn.^2).*exp(-TestSamIn.^2/2);
figure hold on grid
plot(SamIn,SamOut,'k+')
plot(TestSamIn,TestSamOut,'k--') xlabel('Input x'); ylabel('Output y');
Centers = SamIn(:,1:ClusterNum);
NumberInClusters = zeros(ClusterNum,1); % 各类中的样本数,初始化为零 IndexInClusters = zeros(ClusterNum,SamNum); % 各类所含样本的索引号 while 1,
NumberInClusters = zeros(ClusterNum,1); % 各类中的样本数,初始化为零 IndexInClusters = zeros(ClusterNum,SamNum); % 各类所含样本的索引号
% 按最小距离原则对所有样本进行分类 for i = 1:SamNum
AllDistance = dist(Centers',SamIn(:,i)); [MinDist,Pos] = min(AllDistance);
NumberInClusters(Pos) = NumberInClusters(Pos) + 1; IndexInClusters(Pos,NumberInClusters(Pos)) = i; end
% 保存旧的聚类中心
OldCenters = Centers;
for i = 1:ClusterNum
Index = IndexInClusters(i,1:NumberInClusters(i)); Centers(:,i) = mean(SamIn(:,Index)')'; end
% 判断新旧聚类中心是否一致,是则结束聚类 EqualNum = sum(sum(Centers==OldCenters)); if EqualNum == InDim*ClusterNum, break, end end
% 计算各隐节点的扩展常数(宽度)
AllDistances = dist(Centers',Centers); % 计算隐节点数据中心间的距离(矩阵) Maximum = max(max(AllDistances)); % 找出其中最大的一个距离 for i = 1:ClusterNum % 将对角线上的0 替换为较大的值 AllDistances(i,i) = Maximum+1; end
Spreads = Overlap*min(AllDistances)'; % 以隐节点间的最小距离作为扩展常数
% 计算各隐节点的输出权值
Distance = dist(Centers',SamIn); % 计算各样本输入离各数据中心的距离 SpreadsMat = repmat(Spreads,1,SamNum);
HiddenUnitOut = radbas(Distance./SpreadsMat); % 计算隐节点输出阵 HiddenUnitOutEx = [HiddenUnitOut' ones(SamNum,1)]'; % 考虑偏移 W2Ex = SamOut*pinv(HiddenUnitOutEx); % 求广义输出权值 W2 = W2Ex(:,1:ClusterNum); % 输出权值 B2 = W2Ex(:,ClusterNum+1); % 偏移
% 测试
TestDistance = dist(Centers',TestSamIn);
TestSpreadsMat = repmat(Spreads,1,TestSamNum);
TestHiddenUnitOut = radbas(TestDistance./TestSpreadsMat); TestNNOut = W2*TestHiddenUnitOut+B2; plot(TestSamIn,TestNNOut,'k-') W2 B2
2.基于梯度法的RBF 网设计算法
SamNum = 100; % 训练样本数
TargetSamNum = 101; % 测试样本数 InDim = 1; % 样本输入维数
UnitNum = 10; % 隐节点数
MaxEpoch = 5000; % 最大训练次数 E0 = 0.9; % 目标误差
% 根据目标函数获得样本输入输出 rand('state',sum(100*clock)) NoiseVar = 0.1;
Noise = NoiseVar*randn(1,SamNum); SamIn = 8*rand(1,SamNum)-4;
SamOutNoNoise = 1.1*(1-SamIn+2*SamIn.^2).*exp(-SamIn.^2/2); SamOut = SamOutNoNoise + Noise; TargetIn = -4:0.08:4;
TargetOut = 1.1*(1-TargetIn+2*TargetIn.^2).*exp(-TargetIn.^2/2); figure hold on grid
plot(SamIn,SamOut,'k+') plot(TargetIn,TargetOut,'k--') xlabel('Input x'); ylabel('Output y');
Center = 8*rand(InDim,UnitNum)-4; SP = 0.2*rand(1,UnitNum)+0.1; W = 0.2*rand(1,UnitNum)-0.1;
lrCent = 0.001; % 隐节点数据中心学习系数 lrSP = 0.001; % 隐节点扩展常数学习系数 lrW = 0.001; % 隐节点输出权值学习系数
ErrHistory = []; % 用于记录每次参数调整后的训练误差 for epoch = 1:MaxEpoch AllDist = dist(Center',SamIn); SPMat = repmat(SP',1,SamNum); UnitOut = radbas(AllDist./SPMat); NetOut = W*UnitOut; Error = SamOut-NetOut;
%停止学习判断 SSE = sumsqr(Error)
% 记录每次权值调整后的训练误差 ErrHistory = [ErrHistory SSE]; if SSE CentGrad = (SamIn-repmat(Center(:,i),1,SamNum))... *(Error.*UnitOut(i,:)*W(i)/(SP(i)^2))'; SPGrad = AllDist(i,:).^2*(Error.*UnitOut(i,:)*W(i)/(SP(i)^3))'; WGrad = Error*UnitOut(i,:)'; Center(:,i) = Center(:,i) + lrCent*CentGrad; SP(i) = SP(i) + lrSP*SPGrad; W(i) = W(i) + lrW*WGrad; end end % 测试 TestDistance = dist(Center',TargetIn); TestSpreadsMat = repmat(SP',1,TargetSamNum); TestHiddenUnitOut = radbas(TestDistance./TestSpreadsMat); TestNNOut = W*TestHiddenUnitOut; plot(TargetIn,TestNNOut,'k-') % 绘制学习误差曲线 figure hold on grid [xx,Num] = size(ErrHistory); plot(1:Num,ErrHistory,'k-'); 3.基于OLS 的RBF 网设计算法 SamNum = 100; % 训练样本数 TestSamNum = 101; % 测试样本数 SP = 0.6; % 隐节点扩展常数 ErrorLimit = 0.9; % 目标误差 % 根据目标函数获得样本输入输出 rand('state',sum(100*clock)) NoiseVar = 0.1; Noise = NoiseVar*randn(1,SamNum); SamIn = 8*rand(1,SamNum)-4; SamOutNoNoise = 1.1*(1-SamIn+2*SamIn.^2).*exp(-SamIn.^2/2); SamOut = SamOutNoNoise + Noise; TestSamIn = -4:0.08:4; TestSamOut = 1.1*(1-TestSamIn+2*TestSamIn.^2).*exp(-TestSamIn.^2/2); figure hold on grid plot(SamIn,SamOut,'k+') plot(TestSamIn,TestSamOut,'k--') xlabel('Input x'); ylabel('Output y'); [InDim,MaxUnitNum] = size(SamIn); % 样本输入维数和最大允许隐节点数 % 计算隐节点输出阵 Distance = dist(SamIn',SamIn); HiddenUnitOut = radbas(Distance/SP); PosSelected = []; VectorsSelected = []; HiddenUnitOutSelected = []; ErrHistory = []; % 用于记录每次增加隐节点后的训练误差 VectorsSelectFrom = HiddenUnitOut; dd = sum((SamOut.*SamOut)')'; for k = 1 : MaxUnitNum % 计算各隐节点输出矢量与目标输出矢量的夹角平方值 PP = sum(VectorsSelectFrom.*VectorsSelectFrom)'; Denominator = dd * PP'; [xxx,SelectedNum] = size(PosSelected); if SelectedNum>0, [lin,xxx] = size(Denominator); Denominator(:,PosSelected) = ones(lin,1); end Angle = ((SamOut*VectorsSelectFrom) .^ 2) ./ Denominator; % 选择具有最大投影的矢量,得到相应的数据中心 [value,pos] = max(Angle); PosSelected = [PosSelected pos]; % 计算RBF 网训练误差 HiddenUnitOutSelected = [HiddenUnitOutSelected; HiddenUnitOut(pos,:)]; HiddenUnitOutEx = [HiddenUnitOutSelected; ones(1,SamNum)]; W2Ex = SamOut*pinv(HiddenUnitOutEx); % 用广义逆求广义输出权值 W2 = W2Ex(:,1:k); % 得到输出权值 B2 = W2Ex(:,k+1); % 得到偏移 NNOut = W2*HiddenUnitOutSelected+B2; % 计算RBF 网输出 SSE = sumsqr(SamOut-NNOut) % 记录每次增加隐节点后的训练误差 ErrHistory = [ErrHistory SSE]; if SSE < ErrorLimit, break, end % 作Gram-Schmidt 正交化 NewVector = VectorsSelectFrom(:,pos); ProjectionLen = NewVector' * VectorsSelectFrom / (NewVector'*NewVector); VectorsSelectFrom = VectorsSelectFrom - NewVector * ProjectionLen; end UnitCenters = SamIn(PosSelected);%%%%%%%%%%% % 测试 TestDistance = dist(UnitCenters',TestSamIn);%%%%%%%% TestHiddenUnitOut = radbas(TestDistance/SP); TestNNOut = W2*TestHiddenUnitOut+B2; plot(TestSamIn,TestNNOut,'k-') k UnitCenters W2 B2

