(完整word版)八年级全等三角形证明经典50题(含答案)

2025/5/5 22:56:31

.

13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C

E D C F A B

AB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE, ∴∠AED=∠ABD,

∴四边形ABDE是平行四边形。 ∴得:AE=BD, ∵AF=CD,EF=BC,

∴三角形AEF全等于三角形DBC, ∴∠F=∠C。

14. 已知:AB=CD,∠A=∠D,求证:∠B=∠C

A D B C

证明:设线段AB,CD所在的直线交于E,(当ADBC时,E点是射线AB,DC的交点)。则: △AED是等腰三角形。 ∴AE=DE 而AB=CD

∴BE=CE (等量加等量,或等量减等量) ∴△BEC是等腰三角形 ∴∠B=∠C.

15. P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB

C A

P B D

在AC上取点E, 使AE=AB。

.

.

∵AE=AB AP=AP ∠EAP=∠BAE, ∴△EAP≌△BAP ∴PE=PB。 PC<EC+PE

∴PC<(AC-AE)+PB ∴PC-PB<AC-AB。

16. 已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE

证明:

在AC上取一点D,使得角DBC=角C ∵∠ABC=3∠C

∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C; ∵∠ADB=∠C+∠DBC=2∠C; ∴AB=AD

∴AC – AB =AC-AD=CD=BD

在等腰三角形ABD中,AE是角BAD的角平分线, ∴AE垂直BD ∵BE⊥AE

∴点E一定在直线BD上,

在等腰三角形ABD中,AB=AD,AE垂直BD ∴点E也是BD的中点 ∴BD=2BE ∵BD=CD=AC-AB ∴AC-AB=2BE

17. 已知,E是AB中点,AF=BD,BD=5,AC=7,求DC

.

.

D C B

F

A

E

∵作AG∥BD交DE延长线于G ∴AGE全等BDE ∴AG=BD=5 ∴AGF∽CDF AF=AG=5 ∴DC=CF=2

18.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.

解:延长AD至BC于点E,

∵BD=DC ∴△BDC是等腰三角形 ∴∠DBC=∠DCB

又∵∠1=∠2 ∴∠DBC+∠1=∠DCB+∠2 即∠ABC=∠ACB ∴△ABC是等腰三角形 ∴AB=AC

在△ABD和△ACD中 {AB=AC ∠1=∠2 BD=DC

∴△ABD和△ACD是全等三角形(边角边) ∴∠BAD=∠CAD ∴AE是△ABC的中垂线 ∴AE⊥BC ∴AD⊥BC

19.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.

求证:∠OAB=∠OBA

证明:

∵OM平分∠POQ ∴∠POM=∠QOM

.

.

∵MA⊥OP,MB⊥OQ ∴∠MAO=∠MBO=90 ∵OM=OM

∴△AOM≌△BOM (AAS) ∴OA=OB ∵ON=ON

∴△AON≌△BON (SAS)

∴∠OAB=∠OBA,∠ONA=∠ONB ∵∠ONA+∠ONB=180 ∴∠ONA=∠ONB=90 ∴OM⊥AB 20.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.

P CE

D做BE的延长线,与AP相交于F点,

∵PA//BC BA∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的

角平分线

∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形 在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线 ∴三角形FAB为等腰三角形,AB=AF,BE=EF 在三角形DEF与三角形BEC中,

∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,

∴三角形DEF与三角形BEC为全等三角形,∴DF=BC ∴AB=AF=AD+DF=AD+BC

21.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B

A

C

BD延长AC到E 使AE=AC 连接 ED ∵ AB=AC+CD ∴ CD=CE 可得∠B=∠E △CDE为等腰 ∠ACB=2∠B

.


(完整word版)八年级全等三角形证明经典50题(含答案).doc 将本文的Word文档下载到电脑
搜索更多关于: (完整word版)八年级全等三角形证明经典50题(含答案) 的文档
相关推荐
相关阅读
× 快捷下载通道(下载后可以自由复制和排版)

开通会员免费下载

开通会员后百万份文档资料免费自由复制和下载,是您最优的选择,赶快来试试吧!

单篇下载:10元 点击下载

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219