答略。
例2 一件工作单独由一个人完成,甲要用8小时,乙要用12小时。若甲先单独做5小时,剩下的由乙单独做完,则乙需要做多少小时?(适于六年级程度)
解:因为甲8小时的工作量相当于乙12小时的工作量,所以,甲1小时
作量,剩下的便是乙单独做完这项工作所需要的时间:
在把甲8小时的工作量看作工作总量时,甲1小时的工作量是1,则乙
答略。
例3 某工程由甲、乙两队合做12天完成,现在两队合做4天后,余下的再由甲队单独做10天可以完成。问甲队单独完成这项工程需要多少天?(适于六年级程度)
解:甲、乙两队合做4天后,再共同完成剩下的工作量,需要的天数是12-4=8(天)。这8天的工作量是甲、乙需合做8天才能完成的工作量。
这8天的工作量,甲单独做10天完成,就是说,甲、乙合做1天的工作
(天),再加上后来甲单独工作的10天,便可得到甲队单独完成这项工程需要的天数:
答略。
例4 一项工程,甲单独做10天完成,乙单独做15天完成。现在先由乙队做若干天后,甲再参加,4天就做完了。那么乙先单独做了多少天?(适于六年级程度)
解:因为这项工程,甲单独做10天完成,而甲只做了4天,所以10-4=6(天),这6天的工作量是由乙做的。而乙1天的工作量是甲1天工作量的
去掉乙后来与甲合做的4天,便得到乙先头单独做的天数:
答略。
*例5 甲、乙两人同做一件工作,甲做4天的工作量,等于乙做3天的工作量,若由甲单独做这项工作需要12天完成。现在甲、乙两人合做4天后,剩下的工作由乙单独做需要几天完成?(适于六年级程度)
把甲单独做12天完成的工作量看作工作总量,从工作总量中减去甲、乙合做的工作量,剩下的就是乙单独做的工作量。
再把剩下的工作量除以乙1天的工作量,即得到剩下的工作由乙单独做需要几天完成。
答略。
答略。
第十七讲 逆推法
小朋友在玩“迷宫”游戏时,在纵横交错的道路中常常找不到出口。有些聪明的小朋友,反其道而行之,从出口倒回去找入口,然后再沿着自己走过的路返回来。由于从出口返回时,途径单一,很快就会找到入口,然后再由原路退回,走出“迷宫”自然就不难了。
解应用题也是这样,有些应用题用顺向推理的方法很难解答,如果从问题的结果出发,从后往前逐步推理,问题就很容易得到解决了。
这种从条件或问题反过去想而寻求解题途径的方法,叫做逆推法。
用逆推法解应用题列算式时,经常要根据加减互逆,乘除互逆的关系,把原题中的加用减算,减用加算;把原题中的乘用除算,除用乘算。
(一)从结果出发逐步逆推
例1 一个数除以4,再乘以2,得16,求这个数。(适于四年级程度) 解:由最后再乘以2得16,可看出,在没乘以2之前的数是:
16÷2=8
在没除以4之前的数是: 8×4=32
答:这个数是32。
*例2 粮库存有一批大米,第一天运走450千克,第二天运进720千克,第三天又运走610千克,粮库现有大米1500千克。问粮库原来有大米多少千克?(适于四年级程度)
解:由现有大米1500千克,第三天运走610千克,可以看出,在没运走610千克之前,粮库中有大米:
1500+610=2110(千克)
在没运进720千克之前,粮库里有大米:
2110-720=1390(千克)
在没运走450千克之前,粮库里有大米:
1390+450=1840(千克)
答:粮库里原来有大米1840千克。
*例3 某数加上9后,再乘以9,然后减去9,最后再除以9,得9。问这个数原来是多少?(适于四年级程度)
解:由最后除以9,得9,看得出在除以9之前的数是:
9×9=81
在减去9之前的数是:

