2017-2018学年苏教版高中数学必修四全册教案

2025/5/12 13:20:59

cosx1?sinx1?2sinxcosx1?tanx??221?sinxcosx1?tanx cosx?sinx例5.证明(1) (2)

例6、求证:sinx?tanx?cosx?cotx?2sinx?cosx?tanx?cotx.

22 26

小结:证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明

时常用的方法有:(1)从一边开始,证明它等于另一边;

(2)证明左右两边同等于同一个式子;

(3)证明与原式等价的另一个式子成立,从而推出原式成立。

三、课堂小结:

1.运用同角三角函数关系式化简、证明。

2.常用的变形措施有:大角化小,切割化弦等

27

第7课时 §1.2.3 三角函数的诱导公式(1)

【教学目标】 一、知识与技能:

(1)通过本节内容的教学,使学生掌握180o+?,-?,180o-?角的正弦、余弦、正切的诱导公式及其探求思路;

(2) 能熟练掌握诱导公式一至四,并运用求任意角的三角函数值,进行 简单的三角函数式的化简及论证过程目标: 二、过程与方法

通过公式的应用,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。 三、情感态度价值观:

通过诱导公式的应用,使学生认识到转化“矛盾”是解决问题的一条行之有效的途径。 教学重点难点: 理解并掌握诱导公式。 【教学过程】 一、复习引入

利用单位圆表示任意角?的正弦值和余弦值; 二、新课讲解:

1、引入:由三角函数的定义可以得到这样的结论:终边相同角的三角函数值____________,故有 公式一:

28

公式(一)的作用:可以把任意角的正弦、余弦、正切化为________之间角的正弦、余弦、正切,其方法是先在________内找出与角?终边相同的角,再把它写成公式(一)的形式,然后得出结果

注意:诱导公式一及其用途: sin(k?360???)?sin?,cos(k?360???)?cos?,tan(k?360???)?tan?,k?Z.

????由公式一把任意角?转化为?我们对??0,360内的角后,?0,90范围内的角的三角函

????数值是熟悉的,那么若能把??90,360内的角?的三角函数值转化为求锐角?的三角函数

?值,则问题将得到解决,这就是数学化归思想.

2、如图,?与-?的终边位置关系是___________________

若设?的终边与单位圆交于点P(x,y),则角-?的终边与单位圆的交点必为__________ (如图4-5-2).由三角函数的定义,即可得

sin?=y, cos?=x, tan?=sin(-?)=______, cos(-?)=_________ tan(-?)=________

根据三角函数定义有 公式二:

思考:360??的终边与??的终边位置关系如何?

?y x根据公式二得公式二‘:

29


2017-2018学年苏教版高中数学必修四全册教案.doc 将本文的Word文档下载到电脑
搜索更多关于: 2017-2018学年苏教版高中数学必修四全册教案 的文档
相关推荐
相关阅读
× 快捷下载通道(下载后可以自由复制和排版)

开通会员免费下载

开通会员后百万份文档资料免费自由复制和下载,是您最优的选择,赶快来试试吧!

单篇下载:10元 点击下载

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219